--- library_name: setfit tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer base_model: firqaaa/indo-sentence-bert-base metrics: - accuracy - precision - recall - f1 widget: - text: halaman 97 - 128 tidak ada , diulang halaman 65 - 96 , pembelian hari minggu tanggal 24 desember sore sekitar jam 4 pembayaran menggunakan kartu atm bri bersamaan dengan buku the puppeteer dan sirkus pohon - text: liverpool sukses di kandang tottenham - text: hai angga , untuk penerbitan tiket reschedule diharuskan melakukan pembayaran dulu ya . - text: sedih kalau umat diprovokasi supaya saling membenci . - text: berada di lokasi strategis jalan merdeka , berseberangan agak ke samping bandung indah plaza , tapat sebelah kanan jalan sebelum traffic light , parkir mobil cukup luas . saus bumbu dan lain-lain disediakan cukup lengkap di lantai bawah . di lantai atas suasana agak sepi . bakso cukup enak dan terjangkau harga nya tetapi kuah relatif kurang dan porsi tidak terlalu besar pipeline_tag: text-classification inference: true model-index: - name: SetFit with firqaaa/indo-sentence-bert-base results: - task: type: text-classification name: Text Classification dataset: name: Unknown type: unknown split: test metrics: - type: accuracy value: 0.7171717171717171 name: Accuracy - type: precision value: 0.7171717171717171 name: Precision - type: recall value: 0.7171717171717171 name: Recall - type: f1 value: 0.7171717171717171 name: F1 --- # SetFit with firqaaa/indo-sentence-bert-base This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [firqaaa/indo-sentence-bert-base](https://huggingface.co/firqaaa/indo-sentence-bert-base) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [firqaaa/indo-sentence-bert-base](https://huggingface.co/firqaaa/indo-sentence-bert-base) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 512 tokens - **Number of Classes:** 3 classes ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 2 | | | 1 | | | 0 | | ## Evaluation ### Metrics | Label | Accuracy | Precision | Recall | F1 | |:--------|:---------|:----------|:-------|:-------| | **all** | 0.7172 | 0.7172 | 0.7172 | 0.7172 | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the 🤗 Hub model = SetFitModel.from_pretrained("TRUEnder/setfit-indosentencebert-indonlusmsa-8-shot") # Run inference preds = model("liverpool sukses di kandang tottenham") ``` ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:--------|:----| | Word count | 3 | 22.7917 | 61 | | Label | Training Sample Count | |:------|:----------------------| | 0 | 8 | | 1 | 8 | | 2 | 8 | ### Training Hyperparameters - batch_size: (16, 2) - num_epochs: (2, 16) - max_steps: -1 - sampling_strategy: oversampling - body_learning_rate: (2e-05, 1e-05) - head_learning_rate: 0.01 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: True ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:-------:|:------:|:-------------:|:---------------:| | 0.0417 | 1 | 0.3908 | - | | 0.0833 | 2 | 0.2962 | - | | 0.125 | 3 | 0.2397 | - | | 0.1667 | 4 | 0.3493 | - | | 0.2083 | 5 | 0.2197 | - | | 0.25 | 6 | 0.3782 | - | | 0.2917 | 7 | 0.2341 | - | | 0.3333 | 8 | 0.2166 | - | | 0.375 | 9 | 0.3381 | - | | 0.4167 | 10 | 0.1212 | - | | 0.4583 | 11 | 0.1849 | - | | 0.5 | 12 | 0.1796 | - | | 0.5417 | 13 | 0.2027 | - | | 0.5833 | 14 | 0.1824 | - | | 0.625 | 15 | 0.1242 | - | | 0.6667 | 16 | 0.1071 | - | | 0.7083 | 17 | 0.1324 | - | | 0.75 | 18 | 0.0667 | - | | 0.7917 | 19 | 0.1095 | - | | 0.8333 | 20 | 0.1277 | - | | 0.875 | 21 | 0.0506 | - | | 0.9167 | 22 | 0.0661 | - | | 0.9583 | 23 | 0.0776 | - | | 1.0 | 24 | 0.0371 | 0.2406 | | 1.0417 | 25 | 0.0652 | - | | 1.0833 | 26 | 0.0698 | - | | 1.125 | 27 | 0.0775 | - | | 1.1667 | 28 | 0.052 | - | | 1.2083 | 29 | 0.0399 | - | | 1.25 | 30 | 0.0189 | - | | 1.2917 | 31 | 0.0341 | - | | 1.3333 | 32 | 0.0259 | - | | 1.375 | 33 | 0.0844 | - | | 1.4167 | 34 | 0.0322 | - | | 1.4583 | 35 | 0.0186 | - | | 1.5 | 36 | 0.0328 | - | | 1.5417 | 37 | 0.0107 | - | | 1.5833 | 38 | 0.027 | - | | 1.625 | 39 | 0.0311 | - | | 1.6667 | 40 | 0.0244 | - | | 1.7083 | 41 | 0.0277 | - | | 1.75 | 42 | 0.0132 | - | | 1.7917 | 43 | 0.0153 | - | | 1.8333 | 44 | 0.0147 | - | | 1.875 | 45 | 0.0074 | - | | 1.9167 | 46 | 0.0142 | - | | 1.9583 | 47 | 0.0189 | - | | **2.0** | **48** | **0.0095** | **0.2139** | * The bold row denotes the saved checkpoint. ### Framework Versions - Python: 3.10.12 - SetFit: 1.0.3 - Sentence Transformers: 3.0.1 - Transformers: 4.41.2 - PyTorch: 2.3.0+cu121 - Datasets: 2.19.2 - Tokenizers: 0.19.1 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```