import math import sys import torch import torch.utils.checkpoint import torch.nn.functional as F from torch import nn from torch.nn import CrossEntropyLoss, LayerNorm, MSELoss, BCEWithLogitsLoss from torch.nn.utils import skip_init from typing import Optional, Tuple, Union, List, Dict, Any import pdb from transformers.modeling_outputs import ( BaseModelOutputWithPast, CausalLMOutputWithPast, SequenceClassifierOutputWithPast, ) from transformers.modeling_utils import PreTrainedModel from transformers.utils import logging, is_torch_npu_available from transformers.generation.logits_process import LogitsProcessor from transformers.generation.utils import ( LogitsProcessorList, StoppingCriteriaList, GenerationConfig, ModelOutput, ) from .visual import EVA2CLIPModel from .configuration_chatglm import ChatGLMConfig try: from transformers.utils import ( is_flash_attn_greater_or_equal_2_10, is_flash_attn_2_available, ) if is_flash_attn_2_available(): from flash_attn import flash_attn_func, flash_attn_varlen_func from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa except: pass if sys.platform != "darwin" and not is_torch_npu_available(): torch._C._jit_set_profiling_mode(False) torch._C._jit_set_profiling_executor(False) torch._C._jit_override_can_fuse_on_cpu(True) torch._C._jit_override_can_fuse_on_gpu(True) logger = logging.get_logger(__name__) LANGUAGE_TOKEN_TYPE = 0 VISION_TOKEN_TYPE = 1 _CHECKPOINT_FOR_DOC = "THUDM/ChatGLM" _CONFIG_FOR_DOC = "ChatGLMConfig" def default_init(cls, *args, **kwargs): return cls(*args, **kwargs) class InvalidScoreLogitsProcessor(LogitsProcessor): def __call__( self, input_ids: torch.LongTensor, scores: torch.FloatTensor ) -> torch.FloatTensor: if torch.isnan(scores).any() or torch.isinf(scores).any(): scores.zero_() scores[..., 198] = 5e4 return scores class PrefixEncoder(torch.nn.Module): """ The torch.nn model to encode the prefix Input shape: (batch-size, prefix-length) Output shape: (batch-size, prefix-length, 2*layers*hidden) """ def __init__(self, config: ChatGLMConfig): super().__init__() self.prefix_projection = config.prefix_projection if self.prefix_projection: # Use a two-layer MLP to encode the prefix kv_size = ( config.num_layers * config.kv_channels * config.multi_query_group_num * 2 ) self.embedding = torch.nn.Embedding(config.pre_seq_len, kv_size) self.trans = torch.nn.Sequential( torch.nn.Linear(kv_size, config.hidden_size), torch.nn.Tanh(), torch.nn.Linear(config.hidden_size, kv_size), ) else: self.embedding = torch.nn.Embedding( config.pre_seq_len, config.num_layers * config.kv_channels * config.multi_query_group_num * 2, ) def forward(self, prefix: torch.Tensor): if self.prefix_projection: prefix_tokens = self.embedding(prefix) past_key_values = self.trans(prefix_tokens) else: past_key_values = self.embedding(prefix) return past_key_values def split_tensor_along_last_dim( tensor: torch.Tensor, num_partitions: int, contiguous_split_chunks: bool = False, ) -> List[torch.Tensor]: """Split a tensor along its last dimension. Arguments: tensor: input tensor. num_partitions: number of partitions to split the tensor contiguous_split_chunks: If True, make each chunk contiguous in memory. Returns: A list of Tensors """ # Get the size and dimension. last_dim = tensor.dim() - 1 last_dim_size = tensor.size()[last_dim] // num_partitions # Split. tensor_list = torch.split(tensor, last_dim_size, dim=last_dim) # Note: torch.split does not create contiguous tensors by default. if contiguous_split_chunks: return tuple(chunk.contiguous() for chunk in tensor_list) return tensor_list class RotaryEmbedding(nn.Module): def __init__(self, dim, rope_ratio=1, original_impl=False, device=None, dtype=None): super().__init__() inv_freq = 1.0 / ( 10000 ** (torch.arange(0, dim, 2, device=device).to(dtype=dtype) / dim) ) self.register_buffer("inv_freq", inv_freq) self.dim = dim self.original_impl = original_impl self.rope_ratio = rope_ratio def impl(self, seq_length: int, dim: int, device: torch.device, dtype: torch.dtype): base = 10000 * self.rope_ratio inv_freq = 1.0 / ( base ** (torch.arange(0, dim, 2, device=device, dtype=torch.float32) / dim) ) seq = torch.arange(seq_length, device=inv_freq.device, dtype=torch.float32) freqs = torch.outer(seq, inv_freq) # first part even vector components, second part odd vector components, # 2 * dim in dimension size # emb = torch.cat((freqs, freqs), dim=-1) # emb = torch.stack((freqs, freqs), dim=-1).to(dtype) emb = torch.stack((freqs.cos(), freqs.sin()), dim=-1).to(dtype=dtype) return emb def forward_impl( self, seq_len: int, n_elem: int, dtype: torch.dtype, device: torch.device, base: int = 10000, ): """Enhanced Transformer with Rotary Position Embedding. Derived from: https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/labml_nn/ transformers/rope/__init__.py. MIT License: https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/license. """ # $\Theta = {\theta_i = 10000^{\frac{2(i-1)}{d}}, i \in [1, 2, ..., \frac{d}{2}]}$ base = base * self.rope_ratio theta = 1.0 / ( base ** (torch.arange(0, n_elem, 2, dtype=torch.float, device=device) / n_elem) ) # Create position indexes `[0, 1, ..., seq_len - 1]` seq_idx = torch.arange(seq_len, dtype=torch.float, device=device) # Calculate the product of position index and $\theta_i$ idx_theta = torch.outer(seq_idx, theta).float() cache = torch.stack([torch.cos(idx_theta), torch.sin(idx_theta)], dim=-1) # this is to mimic the behaviour of complex32, else we will get different results if dtype in (torch.float16, torch.bfloat16, torch.int8): cache = cache.bfloat16() if dtype == torch.bfloat16 else cache.half() return cache def forward(self, max_seq_len, offset=0): if self.original_impl: return self.forward_impl( max_seq_len, self.dim, dtype=self.inv_freq.dtype, device=self.inv_freq.device, ) else: return self.impl( max_seq_len, self.dim, dtype=self.inv_freq.dtype, device=self.inv_freq.device, ) @torch.jit.script def apply_rotary_pos_emb(x: torch.Tensor, rope_cache: torch.Tensor) -> torch.Tensor: # x: [b, np, sq, hn] sq = x.size(1) rot_dim = rope_cache.shape[-2] * 2 x, x_pass = x[..., :rot_dim], x[..., rot_dim:] # truncate to support variable sizes rope_cache = rope_cache[:, :sq] xshaped = x.chunk(2, -1) cos, sin = rope_cache[...,0].unsqueeze(2), rope_cache[...,1].unsqueeze(2) x_out2 = torch.concat( [ xshaped[0] * cos - xshaped[1] * sin, xshaped[1] * cos + xshaped[0] * sin, ], -1, ) return torch.cat((x_out2, x_pass), dim=-1) class RMSNorm(torch.nn.Module): def __init__(self, normalized_shape, eps=1e-5, device=None, dtype=None, **kwargs): super().__init__() self.weight = torch.nn.Parameter( torch.empty(normalized_shape, device=device, dtype=dtype) ) self.eps = eps def forward(self, hidden_states: torch.Tensor): input_dtype = hidden_states.dtype variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True) hidden_states = hidden_states * torch.rsqrt(variance + self.eps) return (self.weight * hidden_states).to(input_dtype) class CoreAttention(torch.nn.Module): def __init__(self, config: ChatGLMConfig, layer_number): super(CoreAttention, self).__init__() self.apply_query_key_layer_scaling = config.apply_query_key_layer_scaling self.attention_softmax_in_fp32 = config.attention_softmax_in_fp32 if self.apply_query_key_layer_scaling: self.attention_softmax_in_fp32 = True self.layer_number = max(1, layer_number) projection_size = config.kv_channels * config.num_attention_heads # Per attention head and per partition values. self.hidden_size_per_partition = projection_size self.hidden_size_per_attention_head = ( projection_size // config.num_attention_heads ) self.num_attention_heads_per_partition = config.num_attention_heads coeff = None self.norm_factor = math.sqrt(self.hidden_size_per_attention_head) if self.apply_query_key_layer_scaling: coeff = self.layer_number self.norm_factor *= coeff self.coeff = coeff self.attention_dropout = torch.nn.Dropout(config.attention_dropout) def forward(self, query_layer, key_layer, value_layer, attention_mask): pytorch_major_version = int(torch.__version__.split(".")[0]) if pytorch_major_version >= 2: if attention_mask is None and query_layer.shape[2] == key_layer.shape[2]: context_layer = torch.nn.functional.scaled_dot_product_attention( query_layer, key_layer, value_layer, is_causal=True ) else: if attention_mask is not None: attention_mask = ~attention_mask context_layer = torch.nn.functional.scaled_dot_product_attention( query_layer, key_layer, value_layer, attention_mask ) context_layer = context_layer.transpose(1, 2).contiguous() new_context_layer_shape = context_layer.size()[:-2] + ( self.hidden_size_per_partition, ) context_layer = context_layer.reshape(*new_context_layer_shape) else: # Raw attention scores # [b, np, sq, sk] output_size = ( query_layer.size(0), query_layer.size(1), query_layer.size(2), key_layer.size(2), ) # [b, np, sq, hn] -> [b * np, sq, hn] query_layer = query_layer.view( output_size[0] * output_size[1], output_size[2], -1 ) # [b, np, sk, hn] -> [b * np, sk, hn] key_layer = key_layer.view( output_size[0] * output_size[1], output_size[3], -1 ) # preallocting input tensor: [b * np, sq, sk] matmul_input_buffer = torch.empty( output_size[0] * output_size[1], output_size[2], output_size[3], dtype=query_layer.dtype, device=query_layer.device, ) # Raw attention scores. [b * np, sq, sk] matmul_result = torch.baddbmm( matmul_input_buffer, query_layer, # [b * np, sq, hn] key_layer.transpose(1, 2), # [b * np, hn, sk] beta=0.0, alpha=(1.0 / self.norm_factor), ) # change view to [b, np, sq, sk] attention_scores = matmul_result.view(*output_size) # =========================== # Attention probs and dropout # =========================== # attention scores and attention mask [b, np, sq, sk] if self.attention_softmax_in_fp32: attention_scores = attention_scores.float() if self.coeff is not None: attention_scores = attention_scores * self.coeff if ( attention_mask is None and attention_scores.shape[2] == attention_scores.shape[3] ): attention_mask = torch.ones( output_size[0], 1, output_size[2], output_size[3], device=attention_scores.device, dtype=torch.bool, ) attention_mask.tril_() attention_mask = ~attention_mask if attention_mask is not None: attention_scores = attention_scores.masked_fill( attention_mask, float("-inf") ) attention_probs = F.softmax(attention_scores, dim=-1) attention_probs = attention_probs.type_as(value_layer) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.attention_dropout(attention_probs) # ========================= # Context layer. [sq, b, hp] # ========================= # value_layer -> context layer. # [sk, b, np, hn] --> [b, np, sq, hn] # context layer shape: [b, np, sq, hn] output_size = ( value_layer.size(1), value_layer.size(2), query_layer.size(0), value_layer.size(3), ) # change view [b * np, sk, hn] value_layer = value_layer.view( output_size[0] * output_size[1], value_layer.size(2), -1 ) # change view [b * np, sq, sk] attention_probs = attention_probs.view( output_size[0] * output_size[1], output_size[2], -1 ) # matmul: [b * np, sq, hn] context_layer = torch.bmm(attention_probs, value_layer) # change view [b, np, sq, hn] context_layer = context_layer.view(*output_size) # [b, np, sq, hn] --> [b, sq, np, hn] context_layer = context_layer.transpose(1, 2).contiguous() # [b, sq, np, hn] --> [b, sq, hp] new_context_layer_shape = context_layer.size()[:-2] + ( self.hidden_size_per_partition, ) context_layer = context_layer.reshape(*new_context_layer_shape) return context_layer class SdpaAttention(CoreAttention): def forward(self, query_layer, key_layer, value_layer, attention_mask): if attention_mask is None and query_layer.shape[2] == key_layer.shape[2]: context_layer = torch.nn.functional.scaled_dot_product_attention( query_layer, key_layer, value_layer, is_causal=True, dropout_p=self.config.attention_dropout if self.training else 0.0, ) else: if attention_mask is not None: attention_mask = ~attention_mask context_layer = torch.nn.functional.scaled_dot_product_attention( query_layer, key_layer, value_layer, attention_mask, dropout_p=self.config.attention_dropout if self.training else 0.0, ) context_layer = context_layer.transpose(1, 2).contiguous() new_context_layer_shape = context_layer.size()[:-2] + ( self.hidden_size_per_partition, ) context_layer = context_layer.reshape(*new_context_layer_shape) return context_layer def _get_unpad_data(attention_mask): seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32) indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten() max_seqlen_in_batch = seqlens_in_batch.max().item() cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0)) return ( indices, cu_seqlens, max_seqlen_in_batch, ) # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2 class FlashAttention2(CoreAttention): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10() def forward(self, query_states, key_states, value_states, attention_mask): query_states = query_states.transpose(1, 2) key_states = key_states.transpose(1, 2) value_states = value_states.transpose(1, 2) batch_size, query_length = query_states.shape[:2] if not self._flash_attn_uses_top_left_mask: causal = self.is_causal else: # TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__. causal = self.is_causal and query_length != 1 dropout = self.config.attention_dropout if self.training else 0.0 # Contains at least one padding token in the sequence if attention_mask is not None: ( query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens, ) = self._upad_input( query_states, key_states, value_states, attention_mask, query_length ) cu_seqlens_q, cu_seqlens_k = cu_seq_lens max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens attn_output_unpad = flash_attn_varlen_func( query_states, key_states, value_states, cu_seqlens_q=cu_seqlens_q, cu_seqlens_k=cu_seqlens_k, max_seqlen_q=max_seqlen_in_batch_q, max_seqlen_k=max_seqlen_in_batch_k, dropout_p=dropout, softmax_scale=None, causal=causal, ) attn_output = pad_input( attn_output_unpad, indices_q, batch_size, query_length ) else: attn_output = flash_attn_func( query_states, key_states, value_states, dropout, softmax_scale=None, causal=causal, ) attn_output = attn_output.reshape( batch_size, query_length, self.hidden_size_per_partition ).contiguous() return attn_output def _upad_input( self, query_layer, key_layer, value_layer, attention_mask, query_length ): indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask) batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape key_layer = index_first_axis( key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k, ) value_layer = index_first_axis( value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k, ) if query_length == kv_seq_len: query_layer = index_first_axis( query_layer.reshape( batch_size * kv_seq_len, self.num_attention_heads_per_partition, head_dim, ), indices_k, ) cu_seqlens_q = cu_seqlens_k max_seqlen_in_batch_q = max_seqlen_in_batch_k indices_q = indices_k elif query_length == 1: max_seqlen_in_batch_q = 1 cu_seqlens_q = torch.arange( batch_size + 1, dtype=torch.int32, device=query_layer.device ) # There is a memcpy here, that is very bad. indices_q = cu_seqlens_q[:-1] query_layer = query_layer.squeeze(1) else: # The -q_len: slice assumes left padding. attention_mask = attention_mask[:, -query_length:] query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input( query_layer, attention_mask ) return ( query_layer, key_layer, value_layer, indices_q, (cu_seqlens_q, cu_seqlens_k), (max_seqlen_in_batch_q, max_seqlen_in_batch_k), ) CORE_ATTENTION_CLASSES = { "eager": CoreAttention, "sdpa": SdpaAttention, "flash_attention_2": FlashAttention2, } class SelfAttention(torch.nn.Module): """Parallel self-attention layer abstract class. Self-attention layer takes input with size [s, b, h] and returns output of the same size. """ def __init__(self, config: ChatGLMConfig, layer_number, device=None): super(SelfAttention, self).__init__() self.layer_number = max(1, layer_number) self.projection_size = config.kv_channels * config.num_attention_heads # Per attention head and per partition values. self.hidden_size_per_attention_head = ( self.projection_size // config.num_attention_heads ) self.num_attention_heads_per_partition = config.num_attention_heads self.multi_query_attention = config.multi_query_attention self.qkv_hidden_size = 3 * self.projection_size self.original_rope = config.original_rope if self.multi_query_attention: self.num_multi_query_groups_per_partition = config.multi_query_group_num self.qkv_hidden_size = ( self.projection_size + 2 * self.hidden_size_per_attention_head * config.multi_query_group_num ) self.query_key_value = nn.Linear( config.hidden_size, self.qkv_hidden_size, bias=config.add_bias_linear or config.add_qkv_bias, device=device, **_config_to_kwargs(config), ) self.core_attention = CoreAttention(config, self.layer_number) # Output. self.dense = nn.Linear( self.projection_size, config.hidden_size, bias=config.add_bias_linear, device=device, **_config_to_kwargs(config), ) def _allocate_memory( self, inference_max_sequence_len, batch_size, device=None, dtype=None ): if self.multi_query_attention: num_attention_heads = self.num_multi_query_groups_per_partition else: num_attention_heads = self.num_attention_heads_per_partition return torch.empty( inference_max_sequence_len, batch_size, num_attention_heads, self.hidden_size_per_attention_head, dtype=dtype, device=device, ) def forward( self, hidden_states, attention_mask, rotary_pos_emb, kv_cache=None, use_cache=True, ): # hidden_states: [b, sq, h] # ================================================= # Pre-allocate memory for key-values for inference. # ================================================= # ===================== # Query, Key, and Value # ===================== # Attention heads [b, sq, h] --> [b, sq, (np * 3 * hn)] mixed_x_layer = self.query_key_value(hidden_states) if self.multi_query_attention: (query_layer, key_layer, value_layer) = mixed_x_layer.split( [ self.num_attention_heads_per_partition * self.hidden_size_per_attention_head, self.num_multi_query_groups_per_partition * self.hidden_size_per_attention_head, self.num_multi_query_groups_per_partition * self.hidden_size_per_attention_head, ], dim=-1, ) query_layer = query_layer.view( query_layer.size()[:-1] + ( self.num_attention_heads_per_partition, self.hidden_size_per_attention_head, ) ) key_layer = key_layer.view( key_layer.size()[:-1] + ( self.num_multi_query_groups_per_partition, self.hidden_size_per_attention_head, ) ) value_layer = value_layer.view( value_layer.size()[:-1] + ( self.num_multi_query_groups_per_partition, self.hidden_size_per_attention_head, ) ) else: new_tensor_shape = mixed_x_layer.size()[:-1] + ( self.num_attention_heads_per_partition, 3 * self.hidden_size_per_attention_head, ) mixed_x_layer = mixed_x_layer.view(*new_tensor_shape) # [b, sq, np, 3 * hn] --> 3 [b, sq, np, hn] (query_layer, key_layer, value_layer) = split_tensor_along_last_dim( mixed_x_layer, 3 ) # apply relative positional encoding (rotary embedding) if rotary_pos_emb is not None: query_layer = apply_rotary_pos_emb(query_layer, rotary_pos_emb) key_layer = apply_rotary_pos_emb(key_layer, rotary_pos_emb) # [b, sq, np, hn] -> [b, np, sq, hn] query_layer, key_layer, value_layer = [ k.transpose(1, 2) for k in [query_layer, key_layer, value_layer] ] # adjust key and value for inference if kv_cache is not None: cache_k, cache_v = kv_cache key_layer = torch.cat((cache_k, key_layer), dim=2) value_layer = torch.cat((cache_v, value_layer), dim=2) if use_cache: kv_cache = (key_layer, value_layer) else: kv_cache = None if self.multi_query_attention: key_layer = key_layer.repeat_interleave(self.num_attention_heads_per_partition // self.num_multi_query_groups_per_partition, dim=1) value_layer = value_layer.repeat_interleave(self.num_attention_heads_per_partition // self.num_multi_query_groups_per_partition, dim=1) # ================================== # core attention computation # ================================== context_layer = self.core_attention( query_layer, key_layer, value_layer, attention_mask ) # ================= # Output. [sq, b, h] # ================= output = self.dense(context_layer) return output, kv_cache def _config_to_kwargs(args): common_kwargs = { "dtype": args.torch_dtype, } return common_kwargs class MLP(torch.nn.Module): """MLP. MLP will take the input with h hidden state, project it to 4*h hidden dimension, perform nonlinear transformation, and project the state back into h hidden dimension. """ def __init__(self, config: ChatGLMConfig, device=None): super(MLP, self).__init__() self.add_bias = config.add_bias_linear # Project to 4h. If using swiglu double the output width, see https://arxiv.org/pdf/2002.05202.pdf self.dense_h_to_4h = nn.Linear( config.hidden_size, config.ffn_hidden_size * 2, bias=self.add_bias, device=device, **_config_to_kwargs(config), ) def swiglu(x): x = torch.chunk(x, 2, dim=-1) return F.silu(x[0]) * x[1] self.activation_func = swiglu # Project back to h. self.dense_4h_to_h = nn.Linear( config.ffn_hidden_size, config.hidden_size, bias=self.add_bias, device=device, **_config_to_kwargs(config), ) def forward(self, hidden_states): # [s, b, 4hp] intermediate_parallel = self.dense_h_to_4h(hidden_states) intermediate_parallel = self.activation_func(intermediate_parallel) # [s, b, h] output = self.dense_4h_to_h(intermediate_parallel) return output class GLMBlock(torch.nn.Module): """A single transformer layer. Transformer layer takes input with size [s, b, h] and returns an output of the same size. """ def __init__(self, config: ChatGLMConfig, layer_number, device=None): super(GLMBlock, self).__init__() self.layer_number = layer_number self.apply_residual_connection_post_layernorm = ( config.apply_residual_connection_post_layernorm ) self.fp32_residual_connection = config.fp32_residual_connection LayerNormFunc = RMSNorm if config.rmsnorm else LayerNorm # Layernorm on the input data. self.input_layernorm = LayerNormFunc( config.hidden_size, eps=config.layernorm_epsilon, device=device, dtype=config.torch_dtype, ) # Self attention. self.self_attention = SelfAttention(config, layer_number, device=device) self.hidden_dropout = config.hidden_dropout # Layernorm on the attention output self.post_attention_layernorm = LayerNormFunc( config.hidden_size, eps=config.layernorm_epsilon, device=device, dtype=config.torch_dtype, ) # MLP self.mlp = MLP(config, device=device) def forward( self, hidden_states, attention_mask, rotary_pos_emb, kv_cache=None, use_cache=True, ): # hidden_states: [s, b, h] # Layer norm at the beginning of the transformer layer. layernorm_output = self.input_layernorm(hidden_states) # Self attention. attention_output, kv_cache = self.self_attention( layernorm_output, attention_mask, rotary_pos_emb, kv_cache=kv_cache, use_cache=use_cache, ) # Residual connection. if self.apply_residual_connection_post_layernorm: residual = layernorm_output else: residual = hidden_states layernorm_input = torch.nn.functional.dropout( attention_output, p=self.hidden_dropout, training=self.training ) layernorm_input = residual + layernorm_input # Layer norm post the self attention. layernorm_output = self.post_attention_layernorm(layernorm_input) # MLP. mlp_output = self.mlp(layernorm_output) # Second residual connection. if self.apply_residual_connection_post_layernorm: residual = layernorm_output else: residual = layernorm_input output = torch.nn.functional.dropout( mlp_output, p=self.hidden_dropout, training=self.training ) output = residual + output return output, kv_cache class GLMTransformer(torch.nn.Module): """Transformer class.""" def __init__(self, config: ChatGLMConfig, device=None): super(GLMTransformer, self).__init__() self.fp32_residual_connection = config.fp32_residual_connection self.post_layer_norm = config.post_layer_norm # Number of layers. self.num_layers = config.num_layers # Transformer layers. def build_layer(layer_number): return GLMBlock(config, layer_number, device=device) self.layers = torch.nn.ModuleList( [build_layer(i + 1) for i in range(self.num_layers)] ) if self.post_layer_norm: LayerNormFunc = RMSNorm if config.rmsnorm else LayerNorm # Final layer norm before output. self.final_layernorm = LayerNormFunc( config.hidden_size, eps=config.layernorm_epsilon, device=device, dtype=config.torch_dtype, ) self.gradient_checkpointing = False def _get_layer(self, layer_number): return self.layers[layer_number] def forward( self, hidden_states, attention_mask, rotary_pos_emb, kv_caches=None, use_cache: Optional[bool] = True, output_hidden_states: Optional[bool] = False, ): if not kv_caches: kv_caches = [None for _ in range(self.num_layers)] presents = () if use_cache else None if self.gradient_checkpointing and self.training: if use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." ) use_cache = False all_self_attentions = None all_hidden_states = () if output_hidden_states else None for index in range(self.num_layers): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer = self._get_layer(index) if self.gradient_checkpointing and self.training: layer_ret = torch.utils.checkpoint.checkpoint( layer, hidden_states, attention_mask, rotary_pos_emb, kv_caches[index], use_cache, use_reentrant=False, ) else: layer_ret = layer( hidden_states, attention_mask, rotary_pos_emb, kv_cache=kv_caches[index], use_cache=use_cache, ) hidden_states, kv_cache = layer_ret if use_cache: presents = presents + (kv_cache,) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) # Final layer norm. if self.post_layer_norm: hidden_states = self.final_layernorm(hidden_states) return hidden_states, presents, all_hidden_states, all_self_attentions class ChatGLMPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ is_parallelizable = False supports_gradient_checkpointing = True config_class = ChatGLMConfig base_model_prefix = "transformer" _no_split_modules = ["GLMBlock"] _supports_flash_attn_2 = True _supports_sdpa = True def _init_weights(self, module: nn.Module): """Initialize the weights.""" return def get_masks(self, input_embeds, past_key_values, padding_mask=None): batch_size, seq_length, embed_size = input_embeds.shape full_attention_mask = torch.ones( batch_size, seq_length, seq_length, device=input_embeds.device ) full_attention_mask.tril_() past_length = 0 if past_key_values: past_length = past_key_values[0][0].shape[2] if past_length: full_attention_mask = torch.cat( ( torch.ones( batch_size, seq_length, past_length, device=input_embeds.device ), full_attention_mask, ), dim=-1, ) if padding_mask is not None: full_attention_mask = full_attention_mask * padding_mask.unsqueeze(1) if not past_length and padding_mask is not None: full_attention_mask -= padding_mask.unsqueeze(-1) - 1 full_attention_mask = (full_attention_mask < 0.5).bool() full_attention_mask.unsqueeze_(1) return full_attention_mask def get_position_ids(self, input_ids, device): batch_size, seq_length = input_ids.shape position_ids = ( torch.arange(seq_length, dtype=torch.long, device=device) .unsqueeze(0) .repeat(batch_size, 1) ) return position_ids def get_multimodal_position_ids(self, input_ids, device): batch_size, seq_length = input_ids.shape position_ids = ( torch.arange(seq_length, dtype=torch.long, device=device) .unsqueeze(0) .repeat(batch_size, 1) ) class Embedding(torch.nn.Module): """Language model embeddings.""" def __init__(self, config: ChatGLMConfig, device=None): super(Embedding, self).__init__() self.hidden_size = config.hidden_size # Word embeddings (parallel). self.word_embeddings = nn.Embedding( config.padded_vocab_size, self.hidden_size, dtype=config.torch_dtype, device=device, ) self.fp32_residual_connection = config.fp32_residual_connection def forward(self, input_ids): # Embeddings. words_embeddings = self.word_embeddings(input_ids) embeddings = words_embeddings # If the input flag for fp32 residual connection is set, convert for float. if self.fp32_residual_connection: embeddings = embeddings.float() return embeddings def is_empty(images_list: Optional[List[List[torch.Tensor]]]): if images_list is None or len(images_list) == 0: return True for image_list in images_list: if image_list is not None: return False return True class ChatGLMModel(ChatGLMPreTrainedModel): def __init__(self, config: ChatGLMConfig, device=None, empty_init=True): super().__init__(config) if empty_init: init_method = skip_init else: init_method = default_init init_kwargs = {} if device is not None: init_kwargs["device"] = device self.embedding = init_method(Embedding, config, **init_kwargs) self.num_layers = config.num_layers self.multi_query_group_num = config.multi_query_group_num self.kv_channels = config.kv_channels # Rotary positional embeddings self.seq_length = config.seq_length rotary_dim = ( config.hidden_size // config.num_attention_heads if config.kv_channels is None else config.kv_channels ) self.rotary_pos_emb = RotaryEmbedding( rotary_dim // 2, rope_ratio=config.rope_ratio, original_impl=config.original_rope, device=device, dtype=config.torch_dtype, ) self.encoder = init_method(GLMTransformer, config, **init_kwargs) self.output_layer = init_method( nn.Linear, config.hidden_size, config.padded_vocab_size, bias=False, dtype=config.torch_dtype, **init_kwargs, ) self.pre_seq_len = config.pre_seq_len self.prefix_projection = config.prefix_projection if self.pre_seq_len is not None: for param in self.parameters(): param.requires_grad = False self.prefix_tokens = torch.arange(self.pre_seq_len).long() self.prefix_encoder = PrefixEncoder(config) self.dropout = torch.nn.Dropout(0.1) self.vision = EVA2CLIPModel(config) self.position_ids_skipped = False def get_input_embeddings(self): return self.embedding.word_embeddings def set_input_embeddings(self, value): self.embedding.word_embeddings = value def get_prompt(self, batch_size, device, dtype=torch.half): prefix_tokens = ( self.prefix_tokens.unsqueeze(0).expand(batch_size, -1).to(device) ) past_key_values = self.prefix_encoder(prefix_tokens).type(dtype) past_key_values = past_key_values.view( batch_size, self.pre_seq_len, self.pre_seq_len, self.num_layers * 2, self.multi_query_group_num, self.kv_channels, ) # seq_len, b, nh, hidden_size past_key_values = self.dropout(past_key_values) past_key_values = past_key_values.permute([2, 1, 0, 3, 4]).split(2) return past_key_values def forward( self, input_ids: torch.LongTensor = None, images: torch.Tensor = None, position_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.BoolTensor] = None, full_attention_mask: Optional[torch.BoolTensor] = None, past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None, inputs_embeds: Optional[torch.Tensor] = None, use_cache: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPast]: """take care of image_encode, position_ids and (attention_mask = None is fine)""" # generate mode with past_key_values. the image features are already mapped if past_key_values is None: self.position_ids_skipped = False # not allow for inputs_embeds, because we want to process image feature assert ( input_ids is not None and inputs_embeds is None ), f"{input_ids} {inputs_embeds}" if not is_empty(images): # multi-modality image_size: int = self.config.vision_config["image_size"] patch_size: int = self.config.vision_config["patch_size"] num_patches = (image_size // patch_size // 2) ** 2 assert len(input_ids) == len(images), f"{len(input_ids)} {len(images)}" inputs_embeds = self.embedding(input_ids) images = images.to(dtype=inputs_embeds.dtype) images_features = self.vision(images) if position_ids is None: position_ids = self.get_position_ids( input_ids, device=inputs_embeds.device ) new_input_embeds, new_position_ids = [], [] for i in range(len(input_ids)): input_id = input_ids[i].tolist() boi_token_pos, eoi_token_pos = ( input_id.index(self.config.boi_token_id), input_id.index(self.config.eoi_token_id), ) assert eoi_token_pos - boi_token_pos == 2 new_input_embeds.append( torch.cat( ( inputs_embeds[i, :boi_token_pos], images_features[i].to(inputs_embeds.device), inputs_embeds[i, eoi_token_pos + 1 :], ) ) ) new_position_ids.append( torch.arange( 0, len(input_id) + num_patches - 1, dtype=position_ids.dtype, device=inputs_embeds.device, ) ) inputs_embeds = torch.stack(new_input_embeds, dim=0) position_ids = torch.stack(new_position_ids, dim=0) output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = ( return_dict if return_dict is not None else self.config.use_return_dict ) batch_size, seq_length = input_ids.shape if inputs_embeds is None: inputs_embeds = self.embedding(input_ids) if self.pre_seq_len is not None: if past_key_values is None: past_key_values = self.get_prompt( batch_size=batch_size, device=input_ids.device, dtype=inputs_embeds.dtype, ) if attention_mask is not None: attention_mask = torch.cat( [ attention_mask.new_ones((batch_size, self.pre_seq_len)), attention_mask, ], dim=-1, ) if full_attention_mask is None: if (attention_mask is not None and not attention_mask.all()) or ( past_key_values and seq_length != 1 ): if self.training: # https://github.com/THUDM/GLM-4/issues/264 new_input_ids, new_attention_mask = [], [] for i in range(len(input_ids)): input_id = input_ids[i].tolist() boi_token_pos, eoi_token_pos = ( input_id.index(self.config.boi_token_id), input_id.index(self.config.eoi_token_id), ) assert eoi_token_pos - boi_token_pos == 2 new_attention_mask.append( torch.cat( ( attention_mask[i, : boi_token_pos + 1], torch.ones(num_patches).to(attention_mask.device), attention_mask[i, eoi_token_pos:], ) ) ) new_input_ids.append( torch.cat( ( input_ids[i, : boi_token_pos + 1], input_ids[i, -1].repeat(num_patches), input_ids[i, eoi_token_pos:], ) ) ) attention_mask = torch.stack(new_attention_mask, dim=0) input_ids = torch.stack(new_input_ids, dim=0) inputs_embeds = self.embedding(input_ids) full_attention_mask = self.get_masks( inputs_embeds, past_key_values, padding_mask=attention_mask ) # Rotary positional embeddings rotary_pos_emb = self.rotary_pos_emb(self.seq_length) if position_ids[0].size()[0] == 1 and not self.position_ids_skipped: self.position_ids_skipped = True position_ids[:, 0] = position_ids[:, 0] + 1600 - 1 if position_ids is not None: rotary_pos_emb = rotary_pos_emb[position_ids] else: rotary_pos_emb = rotary_pos_emb[None, :seq_length] hidden_states, presents, all_hidden_states, all_self_attentions = self.encoder( inputs_embeds, full_attention_mask, rotary_pos_emb=rotary_pos_emb, kv_caches=past_key_values, use_cache=use_cache, output_hidden_states=output_hidden_states, ) if not return_dict: return tuple( v for v in [ hidden_states, presents, all_hidden_states, all_self_attentions, ] if v is not None ) return BaseModelOutputWithPast( last_hidden_state=hidden_states, past_key_values=presents, hidden_states=all_hidden_states, attentions=all_self_attentions, ) def _history_to_prompt(history, query): prompt = "" flag = False for i, (old_query, response) in enumerate(history): prompt += ( ("<|user|>" if flag else "") + old_query + "<|assistant|>" + response + "<|endoftext|>" ) flag = True prompt += "{}{}<|assistant|>".format("<|user|>" if flag else "", query) return prompt class ChatGLMForConditionalGeneration(ChatGLMPreTrainedModel): def __init__(self, config: ChatGLMConfig, empty_init=True, device=None): super().__init__(config) self.max_sequence_length = config.max_length self.transformer = ChatGLMModel(config, empty_init=empty_init, device=device) self.config = config def _update_model_kwargs_for_generation( self, outputs: ModelOutput, model_kwargs: Dict[str, Any], is_encoder_decoder: bool = False, ) -> Dict[str, Any]: # update past_key_values cache_name, cache = self._extract_past_from_model_output(outputs) model_kwargs[cache_name] = cache # update attention mask if "attention_mask" in model_kwargs: attention_mask = model_kwargs["attention_mask"] model_kwargs["attention_mask"] = torch.cat( [attention_mask, attention_mask.new_ones((attention_mask.shape[0], 1))], dim=-1, ) # update position ids if "position_ids" in model_kwargs: position_ids = model_kwargs["position_ids"] new_position_id = position_ids[..., -1:].clone() new_position_id += 1 model_kwargs["position_ids"] = torch.cat( [position_ids, new_position_id], dim=-1 ) model_kwargs["is_first_forward"] = False return model_kwargs def prepare_inputs_for_generation( self, input_ids: torch.LongTensor, images: Optional[torch.Tensor] = None, past_key_values: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, use_cache: Optional[bool] = None, is_first_forward: bool = True, **kwargs, ) -> dict: # only last token for input_ids if past is not None if position_ids is None: position_ids = self.get_position_ids(input_ids, device=input_ids.device) if attention_mask is not None: image_size: int = self.config.vision_config["image_size"] patch_size: int = self.config.vision_config["patch_size"] num_patches = (image_size // patch_size // 2) ** 2 new_attention_masks = [] # if not image, use this default id eoi_token_pos = 6 boi_token_pos = 4 for i in range(len(input_ids)): input_id = input_ids[i].tolist() if not is_empty(images): boi_token_pos, eoi_token_pos = ( input_id.index(self.config.boi_token_id), input_id.index(self.config.eoi_token_id), ) assert eoi_token_pos - boi_token_pos == 2 new_attention_masks.append( torch.cat( ( attention_mask[i, : boi_token_pos + 1], attention_mask.new_ones(num_patches), attention_mask[i, eoi_token_pos:], ) ) ) attention_mask = torch.stack(new_attention_masks, dim=0) if not is_first_forward: if past_key_values is not None: position_ids = position_ids[..., -1:] input_ids = input_ids[:, -1:] return { "input_ids": input_ids, "images": images, "past_key_values": past_key_values, "position_ids": position_ids, "attention_mask": attention_mask, "return_last_logit": True, "use_cache": use_cache, } def forward( self, input_ids: Optional[torch.Tensor] = None, images: List[List[torch.Tensor]] = None, position_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, past_key_values: Optional[Tuple[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, return_last_logit: Optional[bool] = False, ): use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = ( return_dict if return_dict is not None else self.config.use_return_dict ) transformer_outputs = self.transformer( input_ids=input_ids, images=images, position_ids=position_ids, attention_mask=attention_mask, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = transformer_outputs[0] if return_last_logit: hidden_states = hidden_states[:, -1:] lm_logits = self.transformer.output_layer(hidden_states) loss = None if labels is not None: new_labels = [] for i in range(len(input_ids)): input_id = input_ids[i].tolist() boi_token_pos, eoi_token_pos = ( input_id.index(self.config.boi_token_id), input_id.index(self.config.eoi_token_id), ) assert eoi_token_pos - boi_token_pos == 2 new_labels.append( torch.cat( ( labels[i, : boi_token_pos + 1], torch.tensor([-100]) .to(labels.device) .to(labels.dtype) .repeat(1600), labels[i, eoi_token_pos:], ) ) ) labels = torch.stack(new_labels, dim=0) lm_logits = lm_logits.to(torch.float32) shift_logits = lm_logits[..., :-1, :].contiguous() shift_labels = labels[..., 1:].contiguous() loss_fct = CrossEntropyLoss(ignore_index=-100) loss = loss_fct( shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1) ) lm_logits = lm_logits.to(hidden_states.dtype) loss = loss.to(hidden_states.dtype) if not return_dict: output = (lm_logits,) + transformer_outputs[1:] return ((loss,) + output) if loss is not None else output return CausalLMOutputWithPast( loss=loss, logits=lm_logits, past_key_values=transformer_outputs.past_key_values, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, ) @staticmethod def _reorder_cache( past: Tuple[Tuple[torch.Tensor, torch.Tensor], ...], beam_idx: torch.LongTensor ) -> Tuple[Tuple[torch.Tensor, torch.Tensor], ...]: """ This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or [`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct beam_idx at every generation step. Output shares the same memory storage as `past`. """ return tuple( ( layer_past[0].index_select(0, beam_idx.to(layer_past[0].device)), layer_past[1].index_select(0, beam_idx.to(layer_past[1].device)), ) for layer_past in past ) class ChatGLMForSequenceClassification(ChatGLMPreTrainedModel): def __init__(self, config: ChatGLMConfig, empty_init=True, device=None): super().__init__(config) self.num_labels = config.num_labels self.transformer = ChatGLMModel(config, empty_init=empty_init, device=device) self.classifier_head = nn.Linear( config.hidden_size, config.num_labels, bias=True, dtype=torch.half ) if config.classifier_dropout is not None: self.dropout = nn.Dropout(config.classifier_dropout) else: self.dropout = None self.config = config def forward( self, input_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, full_attention_mask: Optional[torch.Tensor] = None, past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None, inputs_embeds: Optional[torch.LongTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor, ...], SequenceClassifierOutputWithPast]: return_dict = ( return_dict if return_dict is not None else self.config.use_return_dict ) transformer_outputs = self.transformer( input_ids=input_ids, position_ids=position_ids, attention_mask=attention_mask, full_attention_mask=full_attention_mask, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = transformer_outputs[0] pooled_hidden_states = hidden_states[-1] if self.dropout is not None: pooled_hidden_states = self.dropout(pooled_hidden_states) logits = self.classifier_head(pooled_hidden_states) loss = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and ( labels.dtype == torch.long or labels.dtype == torch.int ): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(logits.squeeze().float(), labels.squeeze()) else: loss = loss_fct(logits.float(), labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct( logits.view(-1, self.num_labels).float(), labels.view(-1) ) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(logits.float(), labels.view(-1, self.num_labels)) if not return_dict: output = (logits,) + transformer_outputs[1:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutputWithPast( loss=loss, logits=logits, past_key_values=transformer_outputs.past_key_values, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, )