{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7efdf8feb680>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1687365123042156379, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAB2lhb6NfAO9XR48u4xRmLmyPmo+bThmOgAAgD8AAIA/2qWgvXpRYD4KQXQ9IueRvoq/zT2W+Ua9AAAAAAAAAACaPFO9hdzwPDfYADs5IS2+SX3tu82UsTsAAAAAAAAAAGaGF74LUo89S8RvPfNXar5HDVe8HLkhPAAAAAAAAAAAzaYWPD/9mD5z6tu98Glkvklck71iur69AAAAAAAAAAA6Uys+uZOPP/0q5T6zXuS+wXSRPoAlOz4AAAAAAAAAAJoQ2bzrANc+BXjrvYfgo74ZzNO9GkgYPQAAAAAAAAAAzWunvNovsD8iLy2/x1kJv56SkzxmwZo9AAAAAAAAAAAARL27Q7c9vNZCAz2wWA6+K9K5PRt07T4AAIA/AACAP/NmGj7l0Z0/i+7LPudg274l0ZY+J+SOPgAAAAAAAAAAM80dPNJalrvHmiK7Z47APFaS1rwm9aE9AACAPwAAgD8zHlO99uRaurOPG7qzLw210FVbux5DNzkAAIA/AACAP3Oyjb4DeDU/XjO9PSAyrb5reF2+10U2PgAAAAAAAAAAZoavu7hUtbtOAVi7TmwkPPObDL334BA9AACAPwAAgD8ANf68QzW2Pywwvr58Wr68hk+8OnBvgb0AAAAAAAAAADOpPb2iHqM+ev9GPi0Wfb4PMRc9MpupvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVKAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQFoZVxCIDYCMAWyUTegDjAF0lEdAlr4NTHbRGHV9lChoBkdAcq5P3ztkWmgHTQ8BaAhHQJa+iRW912d1fZQoaAZHQHJhFkxyn1poB00VAWgIR0CWvt+Y+jdpdX2UKGgGR0BzJO9K28ZlaAdNFAFoCEdAlr8dw3o9tHV9lChoBkdAcmgtP557gWgHTYIBaAhHQJa/eiZfD1p1fZQoaAZHQHAZvKQq7RRoB0v3aAhHQJa/2DBdld11fZQoaAZHQHB61HOKO1hoB00MAWgIR0CWw2m3fAKwdX2UKGgGR0BxkrZnL7oCaAdNIwFoCEdAlsOjV2A5JnV9lChoBkdAc2G7PppvgmgHTRkBaAhHQJbDykLx7Rh1fZQoaAZHQG+a8RL9MsZoB00BAWgIR0CWw9A3T/hmdX2UKGgGR0BwgcRzzVc2aAdNRwFoCEdAlsQ0EC/47HV9lChoBkdAc1QtnPE872gHS9loCEdAlsRRt1p0wXV9lChoBkdAb/HvXsgMdGgHTQoBaAhHQJbEptxdY4h1fZQoaAZHQHDioChew9toB00MAWgIR0CWxR+gDifhdX2UKGgGR0AaAIRh+fAcaAdLyWgIR0CWxUcgyM1kdX2UKGgGR0BwtFTVDrquaAdNDwFoCEdAlsVOIqLCN3V9lChoBkdAcTVMbWEsa2gHTS8BaAhHQJbFfSThYNl1fZQoaAZHQHEu9r9ETg5oB0v+aAhHQJbF99Tgl4V1fZQoaAZHQHNYbpeNT99oB00fAWgIR0CWxhbGWD6FdX2UKGgGR0Bw8BGb1AZ9aAdNKAFoCEdAlsbFkQPI4nV9lChoBkdAcUVQpWmxdWgHS/JoCEdAlsbFuJk5InV9lChoBkdAcjpHWSU1RGgHTR4BaAhHQJbG/a11GLF1fZQoaAZHQHG0d52Qnx9oB0vfaAhHQJbJVEjPfKp1fZQoaAZHQHKia8+RoytoB0v5aAhHQJbKOFRHf/F1fZQoaAZHQHAnF1GLDQ9oB00AAWgIR0CWymrSmZVodX2UKGgGR0BwYPrAxi5NaAdNFwFoCEdAlsrUEcKgI3V9lChoBkdAbw4GQCCBgGgHTSMBaAhHQJbL+GIsRQJ1fZQoaAZHQHCcxMi8nNRoB00eAWgIR0CWzDO9WZJDdX2UKGgGR0BuzNsrNGExaAdNDQFoCEdAlsxoiosI3XV9lChoBkdAbs1tgKF7D2gHTS8BaAhHQJbNQg9vCMx1fZQoaAZHQHMHr6UJOWVoB01XAWgIR0CWzYCeVcD9dX2UKGgGR0BwmmneizsyaAdNCAFoCEdAls4Iv38GcHV9lChoBkdAcN3UFSsKcGgHTToBaAhHQJbOBcRlHz91fZQoaAZHQHGCPZyuIRBoB00JAWgIR0CWzhJK8L8adX2UKGgGR0Bt/tDF6zE8aAdNOgFoCEdAls58CxNZeXV9lChoBkdAcU8E2YOUdWgHTVgBaAhHQJbOjw3HaOB1fZQoaAZHQEbrsIE8q4JoB0vXaAhHQJbPauV5a/11fZQoaAZHQHELUjC53C9oB00/AWgIR0CWz4cOby6MdX2UKGgGR0By4OC7K7qZaAdL6GgIR0CW0JZ3LV4HdX2UKGgGR0BJNsdDIBBBaAdLx2gIR0CW0WUhmoR7dX2UKGgGR0BxqmIhyKekaAdNCAFoCEdAltHvI0ZWJnV9lChoBkdAbPIyKNyYHGgHTRoBaAhHQJbSFQj2SMd1fZQoaAZHQFJJj6vaDf5oB0vAaAhHQJbSHwkPczt1fZQoaAZHQHBcMzMzMzNoB0v9aAhHQJbi0Q+UyHp1fZQoaAZHQHL+XtKIznBoB00cAWgIR0CW40i5uqFRdX2UKGgGR0BF/zr3TNMXaAdL1WgIR0CW47V6u4gBdX2UKGgGR0Bw9HUz9CNTaAdL6WgIR0CW47R5kbxWdX2UKGgGR0BtsbyQPqcFaAdNAwFoCEdAluPhXXAdn3V9lChoBkdAcQnptrKvFGgHTQwBaAhHQJbkiuyNXHR1fZQoaAZHQG5iCed07r9oB00dAWgIR0CW5PoDxLCfdX2UKGgGR0BtgFk8RtgsaAdNEAFoCEdAluUgPEsJ6nV9lChoBkdAcNQWMS9M9WgHTQEBaAhHQJblzYf4h2Z1fZQoaAZHQHD/sr7O3UhoB00TAWgIR0CW5mTFVDKHdX2UKGgGR0BvCIxJul41aAdNFQFoCEdAlugJuIhyKnV9lChoBkdAckNFd9lVcWgHS/toCEdAlulmiQDFInV9lChoBkdAbI5FR51Ng2gHTSEBaAhHQJbp7+bVjI91fZQoaAZHQHE0vnnuAqdoB00VAWgIR0CW6kuhbnoxdX2UKGgGR0By6EP3BYV7aAdNAgFoCEdAluskuL74z3V9lChoBkdAcpkkTHsC1mgHTS8BaAhHQJbrp4lhPTJ1fZQoaAZHQHDaf0qYqoZoB0v9aAhHQJbspIFvAGl1fZQoaAZHQHFMZg9eQdVoB0vfaAhHQJbtMdzXBgx1fZQoaAZHQHM1CEtdzGRoB00iAWgIR0CW7TvMbFS9dX2UKGgGR0BvNJgiNbTuaAdL92gIR0CW7XzyBkI5dX2UKGgGR0Bx2qce8wpOaAdNLAFoCEdAlu40hzNliHV9lChoBkdAcEpQv6CUYGgHTRIBaAhHQJbwtPIn0Cl1fZQoaAZHQHEcdOM2m51oB00CAWgIR0CW8P6eXiR5dX2UKGgGR0BxFc2MsH0LaAdNMwFoCEdAlvD+zMRpUXV9lChoBkdAcf6AeaKDTWgHTQwBaAhHQJbzWJ+DvmZ1fZQoaAZHQHIcdtEXtShoB0vwaAhHQJb0VhmXgLt1fZQoaAZHQHHLvjGT9sJoB0viaAhHQJb1Ju76Hj91fZQoaAZHQHHUHVbzK9xoB00gAWgIR0CW9YVZcLSedX2UKGgGR0BeiqqCHymRaAdN6ANoCEdAlvW8JD3M6nV9lChoBkdAcClvUSZjQWgHTSMBaAhHQJb2IxagVXV1fZQoaAZHQHB2UoScslNoB0v4aAhHQJb3Ck+HJtB1fZQoaAZHQHLZga3qiXZoB0vcaAhHQJb3fwPRRdh1fZQoaAZHQHDcZb2USqVoB0v2aAhHQJb3g8+zMRp1fZQoaAZHQHGJcneBQN1oB00yAWgIR0CW9+Gx2SuAdX2UKGgGR0By0/GLk0aZaAdNJAFoCEdAlvlwwfyPMnV9lChoBkdAcmu1qWTouGgHTUkBaAhHQJb6OMdcSoR1fZQoaAZHQHHxZ4B3iaRoB0v+aAhHQJb6ngBLf1p1fZQoaAZHQG/m9Hc1wYNoB00NAWgIR0CW+wP1tfoidX2UKGgGR0Bxy95gPVd5aAdNMAFoCEdAlvu4kqtoz3V9lChoBkdAcnfqy4Wk8GgHTRUBaAhHQJb8qKwY+B91fZQoaAZHQG+HRfnfVI9oB00AAWgIR0CW/cHObAk+dX2UKGgGR0BxWRCD28IzaAdNGAFoCEdAlv5nbEgnt3V9lChoBkdAcJ+Hnlnyu2gHTSMBaAhHQJb+fGS6lLx1fZQoaAZHQHB4U5U96kZoB01BAWgIR0CW/tFVktmMdX2UKGgGR0BwXfEit7rtaAdNDQFoCEdAlv8ww9JSSHV9lChoBkdAcUKGt6ol2WgHTQwBaAhHQJb/fTZxrBV1fZQoaAZHQGu5D50r9VFoB00NAWgIR0CW/4OavzOHdX2UKGgGR0ByGE+V1Oj7aAdNUgFoCEdAlwB8uez2OHV9lChoBkdAcZWhDw6QvGgHTQcBaAhHQJcAyoOx0Mh1fZQoaAZHQG2LJF9a2WpoB008AWgIR0CXAQ5/9YOldX2UKGgGR0Bxz8RlHz6KaAdL8WgIR0CXAVgam4y5dX2UKGgGR0BulZ0CA+Y/aAdNBQFoCEdAlwF8afjCHnV9lChoBkdAcM+ERaouPGgHS/VoCEdAlwJ8GTs6aXV9lChoBkdAcnD94/u9e2gHTT8BaAhHQJcDtSNwR5F1fZQoaAZHQDBuzZ6D5CZoB0vdaAhHQJcDtD1Gsmx1fZQoaAZHQG3Yz6zmfXhoB00VAWgIR0CXBEiONo8IdX2UKGgGR0BxkGNxVAAyaAdL5WgIR0CXBG4EwFkhdWUu"}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 288, "observation_space": {":type:": "", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}