--- license: mit tags: - generated_from_keras_callback model-index: - name: Regression_xlnet_aug_CustomLoss results: [] --- # Regression_xlnet_aug_CustomLoss This model is a fine-tuned version of [xlnet-base-cased](https://huggingface.co/xlnet-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.2430 - Train Mae: 0.5316 - Train Mse: 0.4353 - Train R2-score: 0.4207 - Validation Loss: 0.2455 - Validation Mae: 0.5751 - Validation Mse: 0.4288 - Validation R2-score: 0.6784 - Epoch: 14 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': 1e-04, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train Mae | Train Mse | Train R2-score | Validation Loss | Validation Mae | Validation Mse | Validation R2-score | Epoch | |:----------:|:---------:|:---------:|:--------------:|:---------------:|:--------------:|:--------------:|:-------------------:|:-----:| | 0.2950 | 0.5789 | 0.4896 | 0.6909 | 0.2512 | 0.5341 | 0.4801 | 0.7603 | 0 | | 0.2659 | 0.5516 | 0.4538 | 0.7145 | 0.2828 | 0.5680 | 0.5282 | 0.7477 | 1 | | 0.2656 | 0.5492 | 0.4587 | 0.6858 | 0.2337 | 0.5345 | 0.4412 | 0.7431 | 2 | | 0.2563 | 0.5484 | 0.4490 | 0.7247 | 0.2413 | 0.5202 | 0.4619 | 0.7581 | 3 | | 0.2589 | 0.5511 | 0.4542 | 0.6757 | 0.2411 | 0.5199 | 0.4615 | 0.7580 | 4 | | 0.2537 | 0.5407 | 0.4437 | 0.7605 | 0.2359 | 0.5244 | 0.4495 | 0.7517 | 5 | | 0.2494 | 0.5385 | 0.4399 | 0.7668 | 0.2510 | 0.5821 | 0.4301 | 0.6621 | 6 | | 0.2495 | 0.5403 | 0.4424 | 0.7765 | 0.2360 | 0.5242 | 0.4496 | 0.7519 | 7 | | 0.2501 | 0.5394 | 0.4383 | 0.5209 | 0.2349 | 0.5279 | 0.4464 | 0.7491 | 8 | | 0.2446 | 0.5343 | 0.4346 | 0.7534 | 0.2366 | 0.5585 | 0.4298 | 0.7105 | 9 | | 0.2439 | 0.5316 | 0.4323 | 0.7561 | 0.2543 | 0.5376 | 0.4853 | 0.7599 | 10 | | 0.2415 | 0.5348 | 0.4330 | 0.7928 | 0.2341 | 0.5316 | 0.4434 | 0.7459 | 11 | | 0.2408 | 0.5323 | 0.4289 | 0.7827 | 0.2346 | 0.5291 | 0.4454 | 0.7481 | 12 | | 0.2499 | 0.5392 | 0.4410 | 0.6008 | 0.2364 | 0.5230 | 0.4508 | 0.7527 | 13 | | 0.2430 | 0.5316 | 0.4353 | 0.4207 | 0.2455 | 0.5751 | 0.4288 | 0.6784 | 14 | ### Framework versions - Transformers 4.28.1 - TensorFlow 2.12.0 - Datasets 2.12.0 - Tokenizers 0.13.3