--- license: mit tags: - generated_from_keras_callback model-index: - name: Regression_xlnet_aug_CustomLoss results: [] --- # Regression_xlnet_aug_CustomLoss This model is a fine-tuned version of [xlnet-base-cased](https://huggingface.co/xlnet-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.3652 - Train Mae: 0.5686 - Train Mse: 0.4521 - Train R2-score: 0.7022 - Validation Loss: 0.3538 - Validation Mae: 0.5478 - Validation Mse: 0.4335 - Validation R2-score: 0.7272 - Epoch: 14 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': 1e-04, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train Mae | Train Mse | Train R2-score | Validation Loss | Validation Mae | Validation Mse | Validation R2-score | Epoch | |:----------:|:---------:|:---------:|:--------------:|:---------------:|:--------------:|:--------------:|:-------------------:|:-----:| | 0.3976 | 0.5843 | 0.4994 | 0.6170 | 0.3698 | 0.6232 | 0.4576 | 0.5391 | 0 | | 0.3938 | 0.5830 | 0.4901 | 0.5860 | 0.4330 | 0.6806 | 0.5537 | 0.2841 | 1 | | 0.3822 | 0.5739 | 0.4691 | -2.6800 | 0.3660 | 0.5198 | 0.4614 | 0.7579 | 2 | | 0.3716 | 0.5723 | 0.4607 | -0.3420 | 0.3541 | 0.5461 | 0.4343 | 0.7295 | 3 | | 0.3852 | 0.5794 | 0.4793 | 0.6654 | 0.3524 | 0.5654 | 0.4288 | 0.6982 | 4 | | 0.3826 | 0.5782 | 0.4787 | 0.5114 | 0.3584 | 0.5991 | 0.4374 | 0.6172 | 5 | | 0.3817 | 0.5746 | 0.4754 | 0.6431 | 0.3569 | 0.5945 | 0.4348 | 0.6304 | 6 | | 0.3705 | 0.5689 | 0.4541 | 0.6679 | 0.3621 | 0.5210 | 0.4528 | 0.7540 | 7 | | 0.3719 | 0.5654 | 0.4567 | 0.6807 | 0.3544 | 0.5446 | 0.4350 | 0.7315 | 8 | | 0.3752 | 0.5698 | 0.4638 | 0.6324 | 0.3571 | 0.5343 | 0.4413 | 0.7433 | 9 | | 0.3773 | 0.5714 | 0.4655 | 0.7523 | 0.3534 | 0.5787 | 0.4294 | 0.6701 | 10 | | 0.3651 | 0.5615 | 0.4490 | 0.6223 | 0.3766 | 0.5372 | 0.4846 | 0.7600 | 11 | | 0.3706 | 0.5649 | 0.4529 | 0.5998 | 0.3525 | 0.5683 | 0.4286 | 0.6924 | 12 | | 0.3779 | 0.5687 | 0.4619 | 0.6900 | 0.3532 | 0.5771 | 0.4291 | 0.6737 | 13 | | 0.3652 | 0.5686 | 0.4521 | 0.7022 | 0.3538 | 0.5478 | 0.4335 | 0.7272 | 14 | ### Framework versions - Transformers 4.28.1 - TensorFlow 2.12.0 - Datasets 2.11.0 - Tokenizers 0.13.3