diff --git "a/compiled/VAEEncoder.mlmodelc/model.mil" "b/compiled/VAEEncoder.mlmodelc/model.mil" new file mode 100644--- /dev/null +++ "b/compiled/VAEEncoder.mlmodelc/model.mil" @@ -0,0 +1,740 @@ +program(1.0) +[buildInfo = dict, tensor>({{"coremlc-component-MIL", "5.33.5"}, {"coremlc-version", "1877.0.48"}, {"coremltools-component-torch", "2.0.1"}, {"coremltools-version", "7.0b1"}})] +{ + func main(tensor z) { + tensor var_15 = const()[name = tensor("op_15"), val = tensor(1)]; + tensor var_33 = const()[name = tensor("op_33"), val = tensor([1, 1])]; + tensor var_35 = const()[name = tensor("op_35"), val = tensor([1, 1])]; + tensor input_1_pad_type_0 = const()[name = tensor("input_1_pad_type_0"), val = tensor("custom")]; + tensor input_1_pad_0 = const()[name = tensor("input_1_pad_0"), val = tensor([1, 1, 1, 1])]; + tensor encoder_conv_in_weight_to_fp16 = const()[name = tensor("encoder_conv_in_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(64)))]; + tensor encoder_conv_in_bias_to_fp16 = const()[name = tensor("encoder_conv_in_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(7040)))]; + tensor input_1_cast = conv(bias = encoder_conv_in_bias_to_fp16, dilations = var_35, groups = var_15, pad = input_1_pad_0, pad_type = input_1_pad_type_0, strides = var_33, weight = encoder_conv_in_weight_to_fp16, x = z)[name = tensor("input_1_cast")]; + tensor reshape_0_shape_0 = const()[name = tensor("reshape_0_shape_0"), val = tensor([1, 32, 4, 1024, 1024])]; + tensor reshape_0_cast = reshape(shape = reshape_0_shape_0, x = input_1_cast)[name = tensor("reshape_0_cast")]; + tensor reduce_mean_0_axes_0 = const()[name = tensor("reduce_mean_0_axes_0"), val = tensor([2, 3, 4])]; + tensor reduce_mean_0_keep_dims_0 = const()[name = tensor("reduce_mean_0_keep_dims_0"), val = tensor(true)]; + tensor reduce_mean_0_cast = reduce_mean(axes = reduce_mean_0_axes_0, keep_dims = reduce_mean_0_keep_dims_0, x = reshape_0_cast)[name = tensor("reduce_mean_0_cast")]; + tensor sub_0_cast = sub(x = reshape_0_cast, y = reduce_mean_0_cast)[name = tensor("sub_0_cast")]; + tensor square_0_cast = square(x = sub_0_cast)[name = tensor("square_0_cast")]; + tensor reduce_mean_2_axes_0 = const()[name = tensor("reduce_mean_2_axes_0"), val = tensor([2, 3, 4])]; + tensor reduce_mean_2_keep_dims_0 = const()[name = tensor("reduce_mean_2_keep_dims_0"), val = tensor(true)]; + tensor reduce_mean_2_cast = reduce_mean(axes = reduce_mean_2_axes_0, keep_dims = reduce_mean_2_keep_dims_0, x = square_0_cast)[name = tensor("reduce_mean_2_cast")]; + tensor add_0_y_0_to_fp16 = const()[name = tensor("add_0_y_0_to_fp16"), val = tensor(0x1.1p-20)]; + tensor add_0_cast = add(x = reduce_mean_2_cast, y = add_0_y_0_to_fp16)[name = tensor("add_0_cast")]; + tensor sqrt_0_cast = sqrt(x = add_0_cast)[name = tensor("sqrt_0_cast")]; + tensor real_div_0_cast = real_div(x = sub_0_cast, y = sqrt_0_cast)[name = tensor("real_div_0_cast")]; + tensor reshape_1_shape_0 = const()[name = tensor("reshape_1_shape_0"), val = tensor([1, 128, 1024, 1024])]; + tensor reshape_1_cast = reshape(shape = reshape_1_shape_0, x = real_div_0_cast)[name = tensor("reshape_1_cast")]; + tensor add_1_mean_0_to_fp16 = const()[name = tensor("add_1_mean_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(7360)))]; + tensor add_1_variance_0_to_fp16 = const()[name = tensor("add_1_variance_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(7680)))]; + tensor add_1_gamma_0_to_fp16 = const()[name = tensor("add_1_gamma_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(8000)))]; + tensor add_1_beta_0_to_fp16 = const()[name = tensor("add_1_beta_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(8320)))]; + tensor add_1_epsilon_0_to_fp16 = const()[name = tensor("add_1_epsilon_0_to_fp16"), val = tensor(0x1.5p-17)]; + tensor add_1_cast = batch_norm(beta = add_1_beta_0_to_fp16, epsilon = add_1_epsilon_0_to_fp16, gamma = add_1_gamma_0_to_fp16, mean = add_1_mean_0_to_fp16, variance = add_1_variance_0_to_fp16, x = reshape_1_cast)[name = tensor("add_1_cast")]; + tensor input_5_cast = silu(x = add_1_cast)[name = tensor("input_5_cast")]; + tensor var_54 = const()[name = tensor("op_54"), val = tensor([1, 1])]; + tensor var_56 = const()[name = tensor("op_56"), val = tensor([1, 1])]; + tensor input_7_pad_type_0 = const()[name = tensor("input_7_pad_type_0"), val = tensor("custom")]; + tensor input_7_pad_0 = const()[name = tensor("input_7_pad_0"), val = tensor([1, 1, 1, 1])]; + tensor encoder_down_blocks_0_resnets_0_conv1_weight_to_fp16 = const()[name = tensor("encoder_down_blocks_0_resnets_0_conv1_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(8640)))]; + tensor encoder_down_blocks_0_resnets_0_conv1_bias_to_fp16 = const()[name = tensor("encoder_down_blocks_0_resnets_0_conv1_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(303616)))]; + tensor input_7_cast = conv(bias = encoder_down_blocks_0_resnets_0_conv1_bias_to_fp16, dilations = var_56, groups = var_15, pad = input_7_pad_0, pad_type = input_7_pad_type_0, strides = var_54, weight = encoder_down_blocks_0_resnets_0_conv1_weight_to_fp16, x = input_5_cast)[name = tensor("input_7_cast")]; + tensor reshape_4_shape_0 = const()[name = tensor("reshape_4_shape_0"), val = tensor([1, 32, 4, 1024, 1024])]; + tensor reshape_4_cast = reshape(shape = reshape_4_shape_0, x = input_7_cast)[name = tensor("reshape_4_cast")]; + tensor reduce_mean_3_axes_0 = const()[name = tensor("reduce_mean_3_axes_0"), val = tensor([2, 3, 4])]; + tensor reduce_mean_3_keep_dims_0 = const()[name = tensor("reduce_mean_3_keep_dims_0"), val = tensor(true)]; + tensor reduce_mean_3_cast = reduce_mean(axes = reduce_mean_3_axes_0, keep_dims = reduce_mean_3_keep_dims_0, x = reshape_4_cast)[name = tensor("reduce_mean_3_cast")]; + tensor sub_2_cast = sub(x = reshape_4_cast, y = reduce_mean_3_cast)[name = tensor("sub_2_cast")]; + tensor square_1_cast = square(x = sub_2_cast)[name = tensor("square_1_cast")]; + tensor reduce_mean_5_axes_0 = const()[name = tensor("reduce_mean_5_axes_0"), val = tensor([2, 3, 4])]; + tensor reduce_mean_5_keep_dims_0 = const()[name = tensor("reduce_mean_5_keep_dims_0"), val = tensor(true)]; + tensor reduce_mean_5_cast = reduce_mean(axes = reduce_mean_5_axes_0, keep_dims = reduce_mean_5_keep_dims_0, x = square_1_cast)[name = tensor("reduce_mean_5_cast")]; + tensor add_2_y_0_to_fp16 = const()[name = tensor("add_2_y_0_to_fp16"), val = tensor(0x1.1p-20)]; + tensor add_2_cast = add(x = reduce_mean_5_cast, y = add_2_y_0_to_fp16)[name = tensor("add_2_cast")]; + tensor sqrt_1_cast = sqrt(x = add_2_cast)[name = tensor("sqrt_1_cast")]; + tensor real_div_1_cast = real_div(x = sub_2_cast, y = sqrt_1_cast)[name = tensor("real_div_1_cast")]; + tensor reshape_5_shape_0 = const()[name = tensor("reshape_5_shape_0"), val = tensor([1, 128, 1024, 1024])]; + tensor reshape_5_cast = reshape(shape = reshape_5_shape_0, x = real_div_1_cast)[name = tensor("reshape_5_cast")]; + tensor add_3_gamma_0_to_fp16 = const()[name = tensor("add_3_gamma_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(303936)))]; + tensor add_3_beta_0_to_fp16 = const()[name = tensor("add_3_beta_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(304256)))]; + tensor add_3_epsilon_0_to_fp16 = const()[name = tensor("add_3_epsilon_0_to_fp16"), val = tensor(0x1.5p-17)]; + tensor add_3_cast = batch_norm(beta = add_3_beta_0_to_fp16, epsilon = add_3_epsilon_0_to_fp16, gamma = add_3_gamma_0_to_fp16, mean = add_1_mean_0_to_fp16, variance = add_1_variance_0_to_fp16, x = reshape_5_cast)[name = tensor("add_3_cast")]; + tensor input_11_cast = silu(x = add_3_cast)[name = tensor("input_11_cast")]; + tensor var_66 = const()[name = tensor("op_66"), val = tensor([1, 1])]; + tensor var_68 = const()[name = tensor("op_68"), val = tensor([1, 1])]; + tensor hidden_states_1_pad_type_0 = const()[name = tensor("hidden_states_1_pad_type_0"), val = tensor("custom")]; + tensor hidden_states_1_pad_0 = const()[name = tensor("hidden_states_1_pad_0"), val = tensor([1, 1, 1, 1])]; + tensor encoder_down_blocks_0_resnets_0_conv2_weight_to_fp16 = const()[name = tensor("encoder_down_blocks_0_resnets_0_conv2_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(304576)))]; + tensor encoder_down_blocks_0_resnets_0_conv2_bias_to_fp16 = const()[name = tensor("encoder_down_blocks_0_resnets_0_conv2_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(599552)))]; + tensor hidden_states_1_cast = conv(bias = encoder_down_blocks_0_resnets_0_conv2_bias_to_fp16, dilations = var_68, groups = var_15, pad = hidden_states_1_pad_0, pad_type = hidden_states_1_pad_type_0, strides = var_66, weight = encoder_down_blocks_0_resnets_0_conv2_weight_to_fp16, x = input_11_cast)[name = tensor("hidden_states_1_cast")]; + tensor var_71_cast = add(x = input_1_cast, y = hidden_states_1_cast)[name = tensor("op_71_cast")]; + tensor reshape_8_shape_0 = const()[name = tensor("reshape_8_shape_0"), val = tensor([1, 32, 4, 1024, 1024])]; + tensor reshape_8_cast = reshape(shape = reshape_8_shape_0, x = var_71_cast)[name = tensor("reshape_8_cast")]; + tensor reduce_mean_6_axes_0 = const()[name = tensor("reduce_mean_6_axes_0"), val = tensor([2, 3, 4])]; + tensor reduce_mean_6_keep_dims_0 = const()[name = tensor("reduce_mean_6_keep_dims_0"), val = tensor(true)]; + tensor reduce_mean_6_cast = reduce_mean(axes = reduce_mean_6_axes_0, keep_dims = reduce_mean_6_keep_dims_0, x = reshape_8_cast)[name = tensor("reduce_mean_6_cast")]; + tensor sub_4_cast = sub(x = reshape_8_cast, y = reduce_mean_6_cast)[name = tensor("sub_4_cast")]; + tensor square_2_cast = square(x = sub_4_cast)[name = tensor("square_2_cast")]; + tensor reduce_mean_8_axes_0 = const()[name = tensor("reduce_mean_8_axes_0"), val = tensor([2, 3, 4])]; + tensor reduce_mean_8_keep_dims_0 = const()[name = tensor("reduce_mean_8_keep_dims_0"), val = tensor(true)]; + tensor reduce_mean_8_cast = reduce_mean(axes = reduce_mean_8_axes_0, keep_dims = reduce_mean_8_keep_dims_0, x = square_2_cast)[name = tensor("reduce_mean_8_cast")]; + tensor add_4_y_0_to_fp16 = const()[name = tensor("add_4_y_0_to_fp16"), val = tensor(0x1.1p-20)]; + tensor add_4_cast = add(x = reduce_mean_8_cast, y = add_4_y_0_to_fp16)[name = tensor("add_4_cast")]; + tensor sqrt_2_cast = sqrt(x = add_4_cast)[name = tensor("sqrt_2_cast")]; + tensor real_div_2_cast = real_div(x = sub_4_cast, y = sqrt_2_cast)[name = tensor("real_div_2_cast")]; + tensor reshape_9_shape_0 = const()[name = tensor("reshape_9_shape_0"), val = tensor([1, 128, 1024, 1024])]; + tensor reshape_9_cast = reshape(shape = reshape_9_shape_0, x = real_div_2_cast)[name = tensor("reshape_9_cast")]; + tensor add_5_gamma_0_to_fp16 = const()[name = tensor("add_5_gamma_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(599872)))]; + tensor add_5_beta_0_to_fp16 = const()[name = tensor("add_5_beta_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(600192)))]; + tensor add_5_epsilon_0_to_fp16 = const()[name = tensor("add_5_epsilon_0_to_fp16"), val = tensor(0x1.5p-17)]; + tensor add_5_cast = batch_norm(beta = add_5_beta_0_to_fp16, epsilon = add_5_epsilon_0_to_fp16, gamma = add_5_gamma_0_to_fp16, mean = add_1_mean_0_to_fp16, variance = add_1_variance_0_to_fp16, x = reshape_9_cast)[name = tensor("add_5_cast")]; + tensor input_19_cast = silu(x = add_5_cast)[name = tensor("input_19_cast")]; + tensor var_84 = const()[name = tensor("op_84"), val = tensor([1, 1])]; + tensor var_86 = const()[name = tensor("op_86"), val = tensor([1, 1])]; + tensor input_21_pad_type_0 = const()[name = tensor("input_21_pad_type_0"), val = tensor("custom")]; + tensor input_21_pad_0 = const()[name = tensor("input_21_pad_0"), val = tensor([1, 1, 1, 1])]; + tensor encoder_down_blocks_0_resnets_1_conv1_weight_to_fp16 = const()[name = tensor("encoder_down_blocks_0_resnets_1_conv1_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(600512)))]; + tensor encoder_down_blocks_0_resnets_1_conv1_bias_to_fp16 = const()[name = tensor("encoder_down_blocks_0_resnets_1_conv1_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(895488)))]; + tensor input_21_cast = conv(bias = encoder_down_blocks_0_resnets_1_conv1_bias_to_fp16, dilations = var_86, groups = var_15, pad = input_21_pad_0, pad_type = input_21_pad_type_0, strides = var_84, weight = encoder_down_blocks_0_resnets_1_conv1_weight_to_fp16, x = input_19_cast)[name = tensor("input_21_cast")]; + tensor reshape_12_shape_0 = const()[name = tensor("reshape_12_shape_0"), val = tensor([1, 32, 4, 1024, 1024])]; + tensor reshape_12_cast = reshape(shape = reshape_12_shape_0, x = input_21_cast)[name = tensor("reshape_12_cast")]; + tensor reduce_mean_9_axes_0 = const()[name = tensor("reduce_mean_9_axes_0"), val = tensor([2, 3, 4])]; + tensor reduce_mean_9_keep_dims_0 = const()[name = tensor("reduce_mean_9_keep_dims_0"), val = tensor(true)]; + tensor reduce_mean_9_cast = reduce_mean(axes = reduce_mean_9_axes_0, keep_dims = reduce_mean_9_keep_dims_0, x = reshape_12_cast)[name = tensor("reduce_mean_9_cast")]; + tensor sub_6_cast = sub(x = reshape_12_cast, y = reduce_mean_9_cast)[name = tensor("sub_6_cast")]; + tensor square_3_cast = square(x = sub_6_cast)[name = tensor("square_3_cast")]; + tensor reduce_mean_11_axes_0 = const()[name = tensor("reduce_mean_11_axes_0"), val = tensor([2, 3, 4])]; + tensor reduce_mean_11_keep_dims_0 = const()[name = tensor("reduce_mean_11_keep_dims_0"), val = tensor(true)]; + tensor reduce_mean_11_cast = reduce_mean(axes = reduce_mean_11_axes_0, keep_dims = reduce_mean_11_keep_dims_0, x = square_3_cast)[name = tensor("reduce_mean_11_cast")]; + tensor add_6_y_0_to_fp16 = const()[name = tensor("add_6_y_0_to_fp16"), val = tensor(0x1.1p-20)]; + tensor add_6_cast = add(x = reduce_mean_11_cast, y = add_6_y_0_to_fp16)[name = tensor("add_6_cast")]; + tensor sqrt_3_cast = sqrt(x = add_6_cast)[name = tensor("sqrt_3_cast")]; + tensor real_div_3_cast = real_div(x = sub_6_cast, y = sqrt_3_cast)[name = tensor("real_div_3_cast")]; + tensor reshape_13_shape_0 = const()[name = tensor("reshape_13_shape_0"), val = tensor([1, 128, 1024, 1024])]; + tensor reshape_13_cast = reshape(shape = reshape_13_shape_0, x = real_div_3_cast)[name = tensor("reshape_13_cast")]; + tensor add_7_gamma_0_to_fp16 = const()[name = tensor("add_7_gamma_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(895808)))]; + tensor add_7_beta_0_to_fp16 = const()[name = tensor("add_7_beta_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(896128)))]; + tensor add_7_epsilon_0_to_fp16 = const()[name = tensor("add_7_epsilon_0_to_fp16"), val = tensor(0x1.5p-17)]; + tensor add_7_cast = batch_norm(beta = add_7_beta_0_to_fp16, epsilon = add_7_epsilon_0_to_fp16, gamma = add_7_gamma_0_to_fp16, mean = add_1_mean_0_to_fp16, variance = add_1_variance_0_to_fp16, x = reshape_13_cast)[name = tensor("add_7_cast")]; + tensor input_25_cast = silu(x = add_7_cast)[name = tensor("input_25_cast")]; + tensor var_96 = const()[name = tensor("op_96"), val = tensor([1, 1])]; + tensor var_98 = const()[name = tensor("op_98"), val = tensor([1, 1])]; + tensor hidden_states_3_pad_type_0 = const()[name = tensor("hidden_states_3_pad_type_0"), val = tensor("custom")]; + tensor hidden_states_3_pad_0 = const()[name = tensor("hidden_states_3_pad_0"), val = tensor([1, 1, 1, 1])]; + tensor encoder_down_blocks_0_resnets_1_conv2_weight_to_fp16 = const()[name = tensor("encoder_down_blocks_0_resnets_1_conv2_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(896448)))]; + tensor encoder_down_blocks_0_resnets_1_conv2_bias_to_fp16 = const()[name = tensor("encoder_down_blocks_0_resnets_1_conv2_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(1191424)))]; + tensor hidden_states_3_cast = conv(bias = encoder_down_blocks_0_resnets_1_conv2_bias_to_fp16, dilations = var_98, groups = var_15, pad = hidden_states_3_pad_0, pad_type = hidden_states_3_pad_type_0, strides = var_96, weight = encoder_down_blocks_0_resnets_1_conv2_weight_to_fp16, x = input_25_cast)[name = tensor("hidden_states_3_cast")]; + tensor var_101_cast = add(x = var_71_cast, y = hidden_states_3_cast)[name = tensor("op_101_cast")]; + tensor hidden_states_7_pad_0 = const()[name = tensor("hidden_states_7_pad_0"), val = tensor([0, 0, 0, 0, 0, 1, 0, 1])]; + tensor hidden_states_7_mode_0 = const()[name = tensor("hidden_states_7_mode_0"), val = tensor("constant")]; + tensor hidden_states_7_constant_val_0_to_fp16 = const()[name = tensor("hidden_states_7_constant_val_0_to_fp16"), val = tensor(0x0p+0)]; + tensor hidden_states_7_cast = pad(constant_val = hidden_states_7_constant_val_0_to_fp16, mode = hidden_states_7_mode_0, pad = hidden_states_7_pad_0, x = var_101_cast)[name = tensor("hidden_states_7_cast")]; + tensor var_109 = const()[name = tensor("op_109"), val = tensor([2, 2])]; + tensor var_111 = const()[name = tensor("op_111"), val = tensor([1, 1])]; + tensor input_29_pad_type_0 = const()[name = tensor("input_29_pad_type_0"), val = tensor("custom")]; + tensor input_29_pad_0 = const()[name = tensor("input_29_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor encoder_down_blocks_0_downsamplers_0_conv_weight_to_fp16 = const()[name = tensor("encoder_down_blocks_0_downsamplers_0_conv_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(1191744)))]; + tensor encoder_down_blocks_0_downsamplers_0_conv_bias_to_fp16 = const()[name = tensor("encoder_down_blocks_0_downsamplers_0_conv_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(1486720)))]; + tensor input_29_cast = conv(bias = encoder_down_blocks_0_downsamplers_0_conv_bias_to_fp16, dilations = var_111, groups = var_15, pad = input_29_pad_0, pad_type = input_29_pad_type_0, strides = var_109, weight = encoder_down_blocks_0_downsamplers_0_conv_weight_to_fp16, x = hidden_states_7_cast)[name = tensor("input_29_cast")]; + tensor reshape_16_shape_0 = const()[name = tensor("reshape_16_shape_0"), val = tensor([1, 32, 4, 512, 512])]; + tensor reshape_16_cast = reshape(shape = reshape_16_shape_0, x = input_29_cast)[name = tensor("reshape_16_cast")]; + tensor reduce_mean_12_axes_0 = const()[name = tensor("reduce_mean_12_axes_0"), val = tensor([2, 3, 4])]; + tensor reduce_mean_12_keep_dims_0 = const()[name = tensor("reduce_mean_12_keep_dims_0"), val = tensor(true)]; + tensor reduce_mean_12_cast = reduce_mean(axes = reduce_mean_12_axes_0, keep_dims = reduce_mean_12_keep_dims_0, x = reshape_16_cast)[name = tensor("reduce_mean_12_cast")]; + tensor sub_8_cast = sub(x = reshape_16_cast, y = reduce_mean_12_cast)[name = tensor("sub_8_cast")]; + tensor square_4_cast = square(x = sub_8_cast)[name = tensor("square_4_cast")]; + tensor reduce_mean_14_axes_0 = const()[name = tensor("reduce_mean_14_axes_0"), val = tensor([2, 3, 4])]; + tensor reduce_mean_14_keep_dims_0 = const()[name = tensor("reduce_mean_14_keep_dims_0"), val = tensor(true)]; + tensor reduce_mean_14_cast = reduce_mean(axes = reduce_mean_14_axes_0, keep_dims = reduce_mean_14_keep_dims_0, x = square_4_cast)[name = tensor("reduce_mean_14_cast")]; + tensor add_8_y_0_to_fp16 = const()[name = tensor("add_8_y_0_to_fp16"), val = tensor(0x1.1p-20)]; + tensor add_8_cast = add(x = reduce_mean_14_cast, y = add_8_y_0_to_fp16)[name = tensor("add_8_cast")]; + tensor sqrt_4_cast = sqrt(x = add_8_cast)[name = tensor("sqrt_4_cast")]; + tensor real_div_4_cast = real_div(x = sub_8_cast, y = sqrt_4_cast)[name = tensor("real_div_4_cast")]; + tensor reshape_17_shape_0 = const()[name = tensor("reshape_17_shape_0"), val = tensor([1, 128, 512, 512])]; + tensor reshape_17_cast = reshape(shape = reshape_17_shape_0, x = real_div_4_cast)[name = tensor("reshape_17_cast")]; + tensor add_9_gamma_0_to_fp16 = const()[name = tensor("add_9_gamma_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(1487040)))]; + tensor add_9_beta_0_to_fp16 = const()[name = tensor("add_9_beta_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(1487360)))]; + tensor add_9_epsilon_0_to_fp16 = const()[name = tensor("add_9_epsilon_0_to_fp16"), val = tensor(0x1.5p-17)]; + tensor add_9_cast = batch_norm(beta = add_9_beta_0_to_fp16, epsilon = add_9_epsilon_0_to_fp16, gamma = add_9_gamma_0_to_fp16, mean = add_1_mean_0_to_fp16, variance = add_1_variance_0_to_fp16, x = reshape_17_cast)[name = tensor("add_9_cast")]; + tensor input_33_cast = silu(x = add_9_cast)[name = tensor("input_33_cast")]; + tensor var_131 = const()[name = tensor("op_131"), val = tensor([1, 1])]; + tensor var_133 = const()[name = tensor("op_133"), val = tensor([1, 1])]; + tensor input_35_pad_type_0 = const()[name = tensor("input_35_pad_type_0"), val = tensor("custom")]; + tensor input_35_pad_0 = const()[name = tensor("input_35_pad_0"), val = tensor([1, 1, 1, 1])]; + tensor encoder_down_blocks_1_resnets_0_conv1_weight_to_fp16 = const()[name = tensor("encoder_down_blocks_1_resnets_0_conv1_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(1487680)))]; + tensor encoder_down_blocks_1_resnets_0_conv1_bias_to_fp16 = const()[name = tensor("encoder_down_blocks_1_resnets_0_conv1_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(2077568)))]; + tensor input_35_cast = conv(bias = encoder_down_blocks_1_resnets_0_conv1_bias_to_fp16, dilations = var_133, groups = var_15, pad = input_35_pad_0, pad_type = input_35_pad_type_0, strides = var_131, weight = encoder_down_blocks_1_resnets_0_conv1_weight_to_fp16, x = input_33_cast)[name = tensor("input_35_cast")]; + tensor reshape_20_shape_0 = const()[name = tensor("reshape_20_shape_0"), val = tensor([1, 32, 8, 512, 512])]; + tensor reshape_20_cast = reshape(shape = reshape_20_shape_0, x = input_35_cast)[name = tensor("reshape_20_cast")]; + tensor reduce_mean_15_axes_0 = const()[name = tensor("reduce_mean_15_axes_0"), val = tensor([2, 3, 4])]; + tensor reduce_mean_15_keep_dims_0 = const()[name = tensor("reduce_mean_15_keep_dims_0"), val = tensor(true)]; + tensor reduce_mean_15_cast = reduce_mean(axes = reduce_mean_15_axes_0, keep_dims = reduce_mean_15_keep_dims_0, x = reshape_20_cast)[name = tensor("reduce_mean_15_cast")]; + tensor sub_10_cast = sub(x = reshape_20_cast, y = reduce_mean_15_cast)[name = tensor("sub_10_cast")]; + tensor square_5_cast = square(x = sub_10_cast)[name = tensor("square_5_cast")]; + tensor reduce_mean_17_axes_0 = const()[name = tensor("reduce_mean_17_axes_0"), val = tensor([2, 3, 4])]; + tensor reduce_mean_17_keep_dims_0 = const()[name = tensor("reduce_mean_17_keep_dims_0"), val = tensor(true)]; + tensor reduce_mean_17_cast = reduce_mean(axes = reduce_mean_17_axes_0, keep_dims = reduce_mean_17_keep_dims_0, x = square_5_cast)[name = tensor("reduce_mean_17_cast")]; + tensor add_10_y_0_to_fp16 = const()[name = tensor("add_10_y_0_to_fp16"), val = tensor(0x1.1p-20)]; + tensor add_10_cast = add(x = reduce_mean_17_cast, y = add_10_y_0_to_fp16)[name = tensor("add_10_cast")]; + tensor sqrt_5_cast = sqrt(x = add_10_cast)[name = tensor("sqrt_5_cast")]; + tensor real_div_5_cast = real_div(x = sub_10_cast, y = sqrt_5_cast)[name = tensor("real_div_5_cast")]; + tensor reshape_21_shape_0 = const()[name = tensor("reshape_21_shape_0"), val = tensor([1, 256, 512, 512])]; + tensor reshape_21_cast = reshape(shape = reshape_21_shape_0, x = real_div_5_cast)[name = tensor("reshape_21_cast")]; + tensor add_11_mean_0_to_fp16 = const()[name = tensor("add_11_mean_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(2078144)))]; + tensor add_11_variance_0_to_fp16 = const()[name = tensor("add_11_variance_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(2078720)))]; + tensor add_11_gamma_0_to_fp16 = const()[name = tensor("add_11_gamma_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(2079296)))]; + tensor add_11_beta_0_to_fp16 = const()[name = tensor("add_11_beta_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(2079872)))]; + tensor add_11_epsilon_0_to_fp16 = const()[name = tensor("add_11_epsilon_0_to_fp16"), val = tensor(0x1.5p-17)]; + tensor add_11_cast = batch_norm(beta = add_11_beta_0_to_fp16, epsilon = add_11_epsilon_0_to_fp16, gamma = add_11_gamma_0_to_fp16, mean = add_11_mean_0_to_fp16, variance = add_11_variance_0_to_fp16, x = reshape_21_cast)[name = tensor("add_11_cast")]; + tensor input_39_cast = silu(x = add_11_cast)[name = tensor("input_39_cast")]; + tensor var_143 = const()[name = tensor("op_143"), val = tensor([1, 1])]; + tensor var_145 = const()[name = tensor("op_145"), val = tensor([1, 1])]; + tensor hidden_states_9_pad_type_0 = const()[name = tensor("hidden_states_9_pad_type_0"), val = tensor("custom")]; + tensor hidden_states_9_pad_0 = const()[name = tensor("hidden_states_9_pad_0"), val = tensor([1, 1, 1, 1])]; + tensor encoder_down_blocks_1_resnets_0_conv2_weight_to_fp16 = const()[name = tensor("encoder_down_blocks_1_resnets_0_conv2_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(2080448)))]; + tensor encoder_down_blocks_1_resnets_0_conv2_bias_to_fp16 = const()[name = tensor("encoder_down_blocks_1_resnets_0_conv2_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(3260160)))]; + tensor hidden_states_9_cast = conv(bias = encoder_down_blocks_1_resnets_0_conv2_bias_to_fp16, dilations = var_145, groups = var_15, pad = hidden_states_9_pad_0, pad_type = hidden_states_9_pad_type_0, strides = var_143, weight = encoder_down_blocks_1_resnets_0_conv2_weight_to_fp16, x = input_39_cast)[name = tensor("hidden_states_9_cast")]; + tensor var_150 = const()[name = tensor("op_150"), val = tensor([1, 1])]; + tensor var_152 = const()[name = tensor("op_152"), val = tensor([1, 1])]; + tensor input_tensor_1_pad_type_0 = const()[name = tensor("input_tensor_1_pad_type_0"), val = tensor("custom")]; + tensor input_tensor_1_pad_0 = const()[name = tensor("input_tensor_1_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor encoder_down_blocks_1_resnets_0_conv_shortcut_weight_to_fp16 = const()[name = tensor("encoder_down_blocks_1_resnets_0_conv_shortcut_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(3260736)))]; + tensor encoder_down_blocks_1_resnets_0_conv_shortcut_bias_to_fp16 = const()[name = tensor("encoder_down_blocks_1_resnets_0_conv_shortcut_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(3326336)))]; + tensor input_tensor_1_cast = conv(bias = encoder_down_blocks_1_resnets_0_conv_shortcut_bias_to_fp16, dilations = var_152, groups = var_15, pad = input_tensor_1_pad_0, pad_type = input_tensor_1_pad_type_0, strides = var_150, weight = encoder_down_blocks_1_resnets_0_conv_shortcut_weight_to_fp16, x = input_29_cast)[name = tensor("input_tensor_1_cast")]; + tensor var_155_cast = add(x = input_tensor_1_cast, y = hidden_states_9_cast)[name = tensor("op_155_cast")]; + tensor reshape_24_shape_0 = const()[name = tensor("reshape_24_shape_0"), val = tensor([1, 32, 8, 512, 512])]; + tensor reshape_24_cast = reshape(shape = reshape_24_shape_0, x = var_155_cast)[name = tensor("reshape_24_cast")]; + tensor reduce_mean_18_axes_0 = const()[name = tensor("reduce_mean_18_axes_0"), val = tensor([2, 3, 4])]; + tensor reduce_mean_18_keep_dims_0 = const()[name = tensor("reduce_mean_18_keep_dims_0"), val = tensor(true)]; + tensor reduce_mean_18_cast = reduce_mean(axes = reduce_mean_18_axes_0, keep_dims = reduce_mean_18_keep_dims_0, x = reshape_24_cast)[name = tensor("reduce_mean_18_cast")]; + tensor sub_12_cast = sub(x = reshape_24_cast, y = reduce_mean_18_cast)[name = tensor("sub_12_cast")]; + tensor square_6_cast = square(x = sub_12_cast)[name = tensor("square_6_cast")]; + tensor reduce_mean_20_axes_0 = const()[name = tensor("reduce_mean_20_axes_0"), val = tensor([2, 3, 4])]; + tensor reduce_mean_20_keep_dims_0 = const()[name = tensor("reduce_mean_20_keep_dims_0"), val = tensor(true)]; + tensor reduce_mean_20_cast = reduce_mean(axes = reduce_mean_20_axes_0, keep_dims = reduce_mean_20_keep_dims_0, x = square_6_cast)[name = tensor("reduce_mean_20_cast")]; + tensor add_12_y_0_to_fp16 = const()[name = tensor("add_12_y_0_to_fp16"), val = tensor(0x1.1p-20)]; + tensor add_12_cast = add(x = reduce_mean_20_cast, y = add_12_y_0_to_fp16)[name = tensor("add_12_cast")]; + tensor sqrt_6_cast = sqrt(x = add_12_cast)[name = tensor("sqrt_6_cast")]; + tensor real_div_6_cast = real_div(x = sub_12_cast, y = sqrt_6_cast)[name = tensor("real_div_6_cast")]; + tensor reshape_25_shape_0 = const()[name = tensor("reshape_25_shape_0"), val = tensor([1, 256, 512, 512])]; + tensor reshape_25_cast = reshape(shape = reshape_25_shape_0, x = real_div_6_cast)[name = tensor("reshape_25_cast")]; + tensor add_13_gamma_0_to_fp16 = const()[name = tensor("add_13_gamma_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(3326912)))]; + tensor add_13_beta_0_to_fp16 = const()[name = tensor("add_13_beta_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(3327488)))]; + tensor add_13_epsilon_0_to_fp16 = const()[name = tensor("add_13_epsilon_0_to_fp16"), val = tensor(0x1.5p-17)]; + tensor add_13_cast = batch_norm(beta = add_13_beta_0_to_fp16, epsilon = add_13_epsilon_0_to_fp16, gamma = add_13_gamma_0_to_fp16, mean = add_11_mean_0_to_fp16, variance = add_11_variance_0_to_fp16, x = reshape_25_cast)[name = tensor("add_13_cast")]; + tensor input_47_cast = silu(x = add_13_cast)[name = tensor("input_47_cast")]; + tensor var_168 = const()[name = tensor("op_168"), val = tensor([1, 1])]; + tensor var_170 = const()[name = tensor("op_170"), val = tensor([1, 1])]; + tensor input_49_pad_type_0 = const()[name = tensor("input_49_pad_type_0"), val = tensor("custom")]; + tensor input_49_pad_0 = const()[name = tensor("input_49_pad_0"), val = tensor([1, 1, 1, 1])]; + tensor encoder_down_blocks_1_resnets_1_conv1_weight_to_fp16 = const()[name = tensor("encoder_down_blocks_1_resnets_1_conv1_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(3328064)))]; + tensor encoder_down_blocks_1_resnets_1_conv1_bias_to_fp16 = const()[name = tensor("encoder_down_blocks_1_resnets_1_conv1_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4507776)))]; + tensor input_49_cast = conv(bias = encoder_down_blocks_1_resnets_1_conv1_bias_to_fp16, dilations = var_170, groups = var_15, pad = input_49_pad_0, pad_type = input_49_pad_type_0, strides = var_168, weight = encoder_down_blocks_1_resnets_1_conv1_weight_to_fp16, x = input_47_cast)[name = tensor("input_49_cast")]; + tensor reshape_28_shape_0 = const()[name = tensor("reshape_28_shape_0"), val = tensor([1, 32, 8, 512, 512])]; + tensor reshape_28_cast = reshape(shape = reshape_28_shape_0, x = input_49_cast)[name = tensor("reshape_28_cast")]; + tensor reduce_mean_21_axes_0 = const()[name = tensor("reduce_mean_21_axes_0"), val = tensor([2, 3, 4])]; + tensor reduce_mean_21_keep_dims_0 = const()[name = tensor("reduce_mean_21_keep_dims_0"), val = tensor(true)]; + tensor reduce_mean_21_cast = reduce_mean(axes = reduce_mean_21_axes_0, keep_dims = reduce_mean_21_keep_dims_0, x = reshape_28_cast)[name = tensor("reduce_mean_21_cast")]; + tensor sub_14_cast = sub(x = reshape_28_cast, y = reduce_mean_21_cast)[name = tensor("sub_14_cast")]; + tensor square_7_cast = square(x = sub_14_cast)[name = tensor("square_7_cast")]; + tensor reduce_mean_23_axes_0 = const()[name = tensor("reduce_mean_23_axes_0"), val = tensor([2, 3, 4])]; + tensor reduce_mean_23_keep_dims_0 = const()[name = tensor("reduce_mean_23_keep_dims_0"), val = tensor(true)]; + tensor reduce_mean_23_cast = reduce_mean(axes = reduce_mean_23_axes_0, keep_dims = reduce_mean_23_keep_dims_0, x = square_7_cast)[name = tensor("reduce_mean_23_cast")]; + tensor add_14_y_0_to_fp16 = const()[name = tensor("add_14_y_0_to_fp16"), val = tensor(0x1.1p-20)]; + tensor add_14_cast = add(x = reduce_mean_23_cast, y = add_14_y_0_to_fp16)[name = tensor("add_14_cast")]; + tensor sqrt_7_cast = sqrt(x = add_14_cast)[name = tensor("sqrt_7_cast")]; + tensor real_div_7_cast = real_div(x = sub_14_cast, y = sqrt_7_cast)[name = tensor("real_div_7_cast")]; + tensor reshape_29_shape_0 = const()[name = tensor("reshape_29_shape_0"), val = tensor([1, 256, 512, 512])]; + tensor reshape_29_cast = reshape(shape = reshape_29_shape_0, x = real_div_7_cast)[name = tensor("reshape_29_cast")]; + tensor add_15_gamma_0_to_fp16 = const()[name = tensor("add_15_gamma_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4508352)))]; + tensor add_15_beta_0_to_fp16 = const()[name = tensor("add_15_beta_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4508928)))]; + tensor add_15_epsilon_0_to_fp16 = const()[name = tensor("add_15_epsilon_0_to_fp16"), val = tensor(0x1.5p-17)]; + tensor add_15_cast = batch_norm(beta = add_15_beta_0_to_fp16, epsilon = add_15_epsilon_0_to_fp16, gamma = add_15_gamma_0_to_fp16, mean = add_11_mean_0_to_fp16, variance = add_11_variance_0_to_fp16, x = reshape_29_cast)[name = tensor("add_15_cast")]; + tensor input_53_cast = silu(x = add_15_cast)[name = tensor("input_53_cast")]; + tensor var_180 = const()[name = tensor("op_180"), val = tensor([1, 1])]; + tensor var_182 = const()[name = tensor("op_182"), val = tensor([1, 1])]; + tensor hidden_states_11_pad_type_0 = const()[name = tensor("hidden_states_11_pad_type_0"), val = tensor("custom")]; + tensor hidden_states_11_pad_0 = const()[name = tensor("hidden_states_11_pad_0"), val = tensor([1, 1, 1, 1])]; + tensor encoder_down_blocks_1_resnets_1_conv2_weight_to_fp16 = const()[name = tensor("encoder_down_blocks_1_resnets_1_conv2_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(4509504)))]; + tensor encoder_down_blocks_1_resnets_1_conv2_bias_to_fp16 = const()[name = tensor("encoder_down_blocks_1_resnets_1_conv2_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(5689216)))]; + tensor hidden_states_11_cast = conv(bias = encoder_down_blocks_1_resnets_1_conv2_bias_to_fp16, dilations = var_182, groups = var_15, pad = hidden_states_11_pad_0, pad_type = hidden_states_11_pad_type_0, strides = var_180, weight = encoder_down_blocks_1_resnets_1_conv2_weight_to_fp16, x = input_53_cast)[name = tensor("hidden_states_11_cast")]; + tensor var_185_cast = add(x = var_155_cast, y = hidden_states_11_cast)[name = tensor("op_185_cast")]; + tensor hidden_states_15_pad_0 = const()[name = tensor("hidden_states_15_pad_0"), val = tensor([0, 0, 0, 0, 0, 1, 0, 1])]; + tensor hidden_states_15_mode_0 = const()[name = tensor("hidden_states_15_mode_0"), val = tensor("constant")]; + tensor hidden_states_15_constant_val_0_to_fp16 = const()[name = tensor("hidden_states_15_constant_val_0_to_fp16"), val = tensor(0x0p+0)]; + tensor hidden_states_15_cast = pad(constant_val = hidden_states_15_constant_val_0_to_fp16, mode = hidden_states_15_mode_0, pad = hidden_states_15_pad_0, x = var_185_cast)[name = tensor("hidden_states_15_cast")]; + tensor var_193 = const()[name = tensor("op_193"), val = tensor([2, 2])]; + tensor var_195 = const()[name = tensor("op_195"), val = tensor([1, 1])]; + tensor input_57_pad_type_0 = const()[name = tensor("input_57_pad_type_0"), val = tensor("custom")]; + tensor input_57_pad_0 = const()[name = tensor("input_57_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor encoder_down_blocks_1_downsamplers_0_conv_weight_to_fp16 = const()[name = tensor("encoder_down_blocks_1_downsamplers_0_conv_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(5689792)))]; + tensor encoder_down_blocks_1_downsamplers_0_conv_bias_to_fp16 = const()[name = tensor("encoder_down_blocks_1_downsamplers_0_conv_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(6869504)))]; + tensor input_57_cast = conv(bias = encoder_down_blocks_1_downsamplers_0_conv_bias_to_fp16, dilations = var_195, groups = var_15, pad = input_57_pad_0, pad_type = input_57_pad_type_0, strides = var_193, weight = encoder_down_blocks_1_downsamplers_0_conv_weight_to_fp16, x = hidden_states_15_cast)[name = tensor("input_57_cast")]; + tensor reshape_32_shape_0 = const()[name = tensor("reshape_32_shape_0"), val = tensor([1, 32, 8, 256, 256])]; + tensor reshape_32_cast = reshape(shape = reshape_32_shape_0, x = input_57_cast)[name = tensor("reshape_32_cast")]; + tensor reduce_mean_24_axes_0 = const()[name = tensor("reduce_mean_24_axes_0"), val = tensor([2, 3, 4])]; + tensor reduce_mean_24_keep_dims_0 = const()[name = tensor("reduce_mean_24_keep_dims_0"), val = tensor(true)]; + tensor reduce_mean_24_cast = reduce_mean(axes = reduce_mean_24_axes_0, keep_dims = reduce_mean_24_keep_dims_0, x = reshape_32_cast)[name = tensor("reduce_mean_24_cast")]; + tensor sub_16_cast = sub(x = reshape_32_cast, y = reduce_mean_24_cast)[name = tensor("sub_16_cast")]; + tensor square_8_cast = square(x = sub_16_cast)[name = tensor("square_8_cast")]; + tensor reduce_mean_26_axes_0 = const()[name = tensor("reduce_mean_26_axes_0"), val = tensor([2, 3, 4])]; + tensor reduce_mean_26_keep_dims_0 = const()[name = tensor("reduce_mean_26_keep_dims_0"), val = tensor(true)]; + tensor reduce_mean_26_cast = reduce_mean(axes = reduce_mean_26_axes_0, keep_dims = reduce_mean_26_keep_dims_0, x = square_8_cast)[name = tensor("reduce_mean_26_cast")]; + tensor add_16_y_0_to_fp16 = const()[name = tensor("add_16_y_0_to_fp16"), val = tensor(0x1.1p-20)]; + tensor add_16_cast = add(x = reduce_mean_26_cast, y = add_16_y_0_to_fp16)[name = tensor("add_16_cast")]; + tensor sqrt_8_cast = sqrt(x = add_16_cast)[name = tensor("sqrt_8_cast")]; + tensor real_div_8_cast = real_div(x = sub_16_cast, y = sqrt_8_cast)[name = tensor("real_div_8_cast")]; + tensor reshape_33_shape_0 = const()[name = tensor("reshape_33_shape_0"), val = tensor([1, 256, 256, 256])]; + tensor reshape_33_cast = reshape(shape = reshape_33_shape_0, x = real_div_8_cast)[name = tensor("reshape_33_cast")]; + tensor add_17_gamma_0_to_fp16 = const()[name = tensor("add_17_gamma_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(6870080)))]; + tensor add_17_beta_0_to_fp16 = const()[name = tensor("add_17_beta_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(6870656)))]; + tensor add_17_epsilon_0_to_fp16 = const()[name = tensor("add_17_epsilon_0_to_fp16"), val = tensor(0x1.5p-17)]; + tensor add_17_cast = batch_norm(beta = add_17_beta_0_to_fp16, epsilon = add_17_epsilon_0_to_fp16, gamma = add_17_gamma_0_to_fp16, mean = add_11_mean_0_to_fp16, variance = add_11_variance_0_to_fp16, x = reshape_33_cast)[name = tensor("add_17_cast")]; + tensor input_61_cast = silu(x = add_17_cast)[name = tensor("input_61_cast")]; + tensor var_215 = const()[name = tensor("op_215"), val = tensor([1, 1])]; + tensor var_217 = const()[name = tensor("op_217"), val = tensor([1, 1])]; + tensor input_63_pad_type_0 = const()[name = tensor("input_63_pad_type_0"), val = tensor("custom")]; + tensor input_63_pad_0 = const()[name = tensor("input_63_pad_0"), val = tensor([1, 1, 1, 1])]; + tensor encoder_down_blocks_2_resnets_0_conv1_weight_to_fp16 = const()[name = tensor("encoder_down_blocks_2_resnets_0_conv1_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(6871232)))]; + tensor encoder_down_blocks_2_resnets_0_conv1_bias_to_fp16 = const()[name = tensor("encoder_down_blocks_2_resnets_0_conv1_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(9230592)))]; + tensor input_63_cast = conv(bias = encoder_down_blocks_2_resnets_0_conv1_bias_to_fp16, dilations = var_217, groups = var_15, pad = input_63_pad_0, pad_type = input_63_pad_type_0, strides = var_215, weight = encoder_down_blocks_2_resnets_0_conv1_weight_to_fp16, x = input_61_cast)[name = tensor("input_63_cast")]; + tensor reshape_36_shape_0 = const()[name = tensor("reshape_36_shape_0"), val = tensor([1, 32, 16, 256, 256])]; + tensor reshape_36_cast = reshape(shape = reshape_36_shape_0, x = input_63_cast)[name = tensor("reshape_36_cast")]; + tensor reduce_mean_27_axes_0 = const()[name = tensor("reduce_mean_27_axes_0"), val = tensor([2, 3, 4])]; + tensor reduce_mean_27_keep_dims_0 = const()[name = tensor("reduce_mean_27_keep_dims_0"), val = tensor(true)]; + tensor reduce_mean_27_cast = reduce_mean(axes = reduce_mean_27_axes_0, keep_dims = reduce_mean_27_keep_dims_0, x = reshape_36_cast)[name = tensor("reduce_mean_27_cast")]; + tensor sub_18_cast = sub(x = reshape_36_cast, y = reduce_mean_27_cast)[name = tensor("sub_18_cast")]; + tensor square_9_cast = square(x = sub_18_cast)[name = tensor("square_9_cast")]; + tensor reduce_mean_29_axes_0 = const()[name = tensor("reduce_mean_29_axes_0"), val = tensor([2, 3, 4])]; + tensor reduce_mean_29_keep_dims_0 = const()[name = tensor("reduce_mean_29_keep_dims_0"), val = tensor(true)]; + tensor reduce_mean_29_cast = reduce_mean(axes = reduce_mean_29_axes_0, keep_dims = reduce_mean_29_keep_dims_0, x = square_9_cast)[name = tensor("reduce_mean_29_cast")]; + tensor add_18_y_0_to_fp16 = const()[name = tensor("add_18_y_0_to_fp16"), val = tensor(0x1.1p-20)]; + tensor add_18_cast = add(x = reduce_mean_29_cast, y = add_18_y_0_to_fp16)[name = tensor("add_18_cast")]; + tensor sqrt_9_cast = sqrt(x = add_18_cast)[name = tensor("sqrt_9_cast")]; + tensor real_div_9_cast = real_div(x = sub_18_cast, y = sqrt_9_cast)[name = tensor("real_div_9_cast")]; + tensor reshape_37_shape_0 = const()[name = tensor("reshape_37_shape_0"), val = tensor([1, 512, 256, 256])]; + tensor reshape_37_cast = reshape(shape = reshape_37_shape_0, x = real_div_9_cast)[name = tensor("reshape_37_cast")]; + tensor add_19_mean_0_to_fp16 = const()[name = tensor("add_19_mean_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(9231680)))]; + tensor add_19_variance_0_to_fp16 = const()[name = tensor("add_19_variance_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(9232768)))]; + tensor add_19_gamma_0_to_fp16 = const()[name = tensor("add_19_gamma_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(9233856)))]; + tensor add_19_beta_0_to_fp16 = const()[name = tensor("add_19_beta_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(9234944)))]; + tensor add_19_epsilon_0_to_fp16 = const()[name = tensor("add_19_epsilon_0_to_fp16"), val = tensor(0x1.5p-17)]; + tensor add_19_cast = batch_norm(beta = add_19_beta_0_to_fp16, epsilon = add_19_epsilon_0_to_fp16, gamma = add_19_gamma_0_to_fp16, mean = add_19_mean_0_to_fp16, variance = add_19_variance_0_to_fp16, x = reshape_37_cast)[name = tensor("add_19_cast")]; + tensor input_67_cast = silu(x = add_19_cast)[name = tensor("input_67_cast")]; + tensor var_227 = const()[name = tensor("op_227"), val = tensor([1, 1])]; + tensor var_229 = const()[name = tensor("op_229"), val = tensor([1, 1])]; + tensor hidden_states_17_pad_type_0 = const()[name = tensor("hidden_states_17_pad_type_0"), val = tensor("custom")]; + tensor hidden_states_17_pad_0 = const()[name = tensor("hidden_states_17_pad_0"), val = tensor([1, 1, 1, 1])]; + tensor encoder_down_blocks_2_resnets_0_conv2_weight_to_fp16 = const()[name = tensor("encoder_down_blocks_2_resnets_0_conv2_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(9236032)))]; + tensor encoder_down_blocks_2_resnets_0_conv2_bias_to_fp16 = const()[name = tensor("encoder_down_blocks_2_resnets_0_conv2_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(13954688)))]; + tensor hidden_states_17_cast = conv(bias = encoder_down_blocks_2_resnets_0_conv2_bias_to_fp16, dilations = var_229, groups = var_15, pad = hidden_states_17_pad_0, pad_type = hidden_states_17_pad_type_0, strides = var_227, weight = encoder_down_blocks_2_resnets_0_conv2_weight_to_fp16, x = input_67_cast)[name = tensor("hidden_states_17_cast")]; + tensor var_234 = const()[name = tensor("op_234"), val = tensor([1, 1])]; + tensor var_236 = const()[name = tensor("op_236"), val = tensor([1, 1])]; + tensor input_tensor_pad_type_0 = const()[name = tensor("input_tensor_pad_type_0"), val = tensor("custom")]; + tensor input_tensor_pad_0 = const()[name = tensor("input_tensor_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor encoder_down_blocks_2_resnets_0_conv_shortcut_weight_to_fp16 = const()[name = tensor("encoder_down_blocks_2_resnets_0_conv_shortcut_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(13955776)))]; + tensor encoder_down_blocks_2_resnets_0_conv_shortcut_bias_to_fp16 = const()[name = tensor("encoder_down_blocks_2_resnets_0_conv_shortcut_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(14217984)))]; + tensor input_tensor_cast = conv(bias = encoder_down_blocks_2_resnets_0_conv_shortcut_bias_to_fp16, dilations = var_236, groups = var_15, pad = input_tensor_pad_0, pad_type = input_tensor_pad_type_0, strides = var_234, weight = encoder_down_blocks_2_resnets_0_conv_shortcut_weight_to_fp16, x = input_57_cast)[name = tensor("input_tensor_cast")]; + tensor var_239_cast = add(x = input_tensor_cast, y = hidden_states_17_cast)[name = tensor("op_239_cast")]; + tensor reshape_40_shape_0 = const()[name = tensor("reshape_40_shape_0"), val = tensor([1, 32, 16, 256, 256])]; + tensor reshape_40_cast = reshape(shape = reshape_40_shape_0, x = var_239_cast)[name = tensor("reshape_40_cast")]; + tensor reduce_mean_30_axes_0 = const()[name = tensor("reduce_mean_30_axes_0"), val = tensor([2, 3, 4])]; + tensor reduce_mean_30_keep_dims_0 = const()[name = tensor("reduce_mean_30_keep_dims_0"), val = tensor(true)]; + tensor reduce_mean_30_cast = reduce_mean(axes = reduce_mean_30_axes_0, keep_dims = reduce_mean_30_keep_dims_0, x = reshape_40_cast)[name = tensor("reduce_mean_30_cast")]; + tensor sub_20_cast = sub(x = reshape_40_cast, y = reduce_mean_30_cast)[name = tensor("sub_20_cast")]; + tensor square_10_cast = square(x = sub_20_cast)[name = tensor("square_10_cast")]; + tensor reduce_mean_32_axes_0 = const()[name = tensor("reduce_mean_32_axes_0"), val = tensor([2, 3, 4])]; + tensor reduce_mean_32_keep_dims_0 = const()[name = tensor("reduce_mean_32_keep_dims_0"), val = tensor(true)]; + tensor reduce_mean_32_cast = reduce_mean(axes = reduce_mean_32_axes_0, keep_dims = reduce_mean_32_keep_dims_0, x = square_10_cast)[name = tensor("reduce_mean_32_cast")]; + tensor add_20_y_0_to_fp16 = const()[name = tensor("add_20_y_0_to_fp16"), val = tensor(0x1.1p-20)]; + tensor add_20_cast = add(x = reduce_mean_32_cast, y = add_20_y_0_to_fp16)[name = tensor("add_20_cast")]; + tensor sqrt_10_cast = sqrt(x = add_20_cast)[name = tensor("sqrt_10_cast")]; + tensor real_div_10_cast = real_div(x = sub_20_cast, y = sqrt_10_cast)[name = tensor("real_div_10_cast")]; + tensor reshape_41_shape_0 = const()[name = tensor("reshape_41_shape_0"), val = tensor([1, 512, 256, 256])]; + tensor reshape_41_cast = reshape(shape = reshape_41_shape_0, x = real_div_10_cast)[name = tensor("reshape_41_cast")]; + tensor add_21_gamma_0_to_fp16 = const()[name = tensor("add_21_gamma_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(14219072)))]; + tensor add_21_beta_0_to_fp16 = const()[name = tensor("add_21_beta_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(14220160)))]; + tensor add_21_epsilon_0_to_fp16 = const()[name = tensor("add_21_epsilon_0_to_fp16"), val = tensor(0x1.5p-17)]; + tensor add_21_cast = batch_norm(beta = add_21_beta_0_to_fp16, epsilon = add_21_epsilon_0_to_fp16, gamma = add_21_gamma_0_to_fp16, mean = add_19_mean_0_to_fp16, variance = add_19_variance_0_to_fp16, x = reshape_41_cast)[name = tensor("add_21_cast")]; + tensor input_75_cast = silu(x = add_21_cast)[name = tensor("input_75_cast")]; + tensor var_252 = const()[name = tensor("op_252"), val = tensor([1, 1])]; + tensor var_254 = const()[name = tensor("op_254"), val = tensor([1, 1])]; + tensor input_77_pad_type_0 = const()[name = tensor("input_77_pad_type_0"), val = tensor("custom")]; + tensor input_77_pad_0 = const()[name = tensor("input_77_pad_0"), val = tensor([1, 1, 1, 1])]; + tensor encoder_down_blocks_2_resnets_1_conv1_weight_to_fp16 = const()[name = tensor("encoder_down_blocks_2_resnets_1_conv1_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(14221248)))]; + tensor encoder_down_blocks_2_resnets_1_conv1_bias_to_fp16 = const()[name = tensor("encoder_down_blocks_2_resnets_1_conv1_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(18939904)))]; + tensor input_77_cast = conv(bias = encoder_down_blocks_2_resnets_1_conv1_bias_to_fp16, dilations = var_254, groups = var_15, pad = input_77_pad_0, pad_type = input_77_pad_type_0, strides = var_252, weight = encoder_down_blocks_2_resnets_1_conv1_weight_to_fp16, x = input_75_cast)[name = tensor("input_77_cast")]; + tensor reshape_44_shape_0 = const()[name = tensor("reshape_44_shape_0"), val = tensor([1, 32, 16, 256, 256])]; + tensor reshape_44_cast = reshape(shape = reshape_44_shape_0, x = input_77_cast)[name = tensor("reshape_44_cast")]; + tensor reduce_mean_33_axes_0 = const()[name = tensor("reduce_mean_33_axes_0"), val = tensor([2, 3, 4])]; + tensor reduce_mean_33_keep_dims_0 = const()[name = tensor("reduce_mean_33_keep_dims_0"), val = tensor(true)]; + tensor reduce_mean_33_cast = reduce_mean(axes = reduce_mean_33_axes_0, keep_dims = reduce_mean_33_keep_dims_0, x = reshape_44_cast)[name = tensor("reduce_mean_33_cast")]; + tensor sub_22_cast = sub(x = reshape_44_cast, y = reduce_mean_33_cast)[name = tensor("sub_22_cast")]; + tensor square_11_cast = square(x = sub_22_cast)[name = tensor("square_11_cast")]; + tensor reduce_mean_35_axes_0 = const()[name = tensor("reduce_mean_35_axes_0"), val = tensor([2, 3, 4])]; + tensor reduce_mean_35_keep_dims_0 = const()[name = tensor("reduce_mean_35_keep_dims_0"), val = tensor(true)]; + tensor reduce_mean_35_cast = reduce_mean(axes = reduce_mean_35_axes_0, keep_dims = reduce_mean_35_keep_dims_0, x = square_11_cast)[name = tensor("reduce_mean_35_cast")]; + tensor add_22_y_0_to_fp16 = const()[name = tensor("add_22_y_0_to_fp16"), val = tensor(0x1.1p-20)]; + tensor add_22_cast = add(x = reduce_mean_35_cast, y = add_22_y_0_to_fp16)[name = tensor("add_22_cast")]; + tensor sqrt_11_cast = sqrt(x = add_22_cast)[name = tensor("sqrt_11_cast")]; + tensor real_div_11_cast = real_div(x = sub_22_cast, y = sqrt_11_cast)[name = tensor("real_div_11_cast")]; + tensor reshape_45_shape_0 = const()[name = tensor("reshape_45_shape_0"), val = tensor([1, 512, 256, 256])]; + tensor reshape_45_cast = reshape(shape = reshape_45_shape_0, x = real_div_11_cast)[name = tensor("reshape_45_cast")]; + tensor add_23_gamma_0_to_fp16 = const()[name = tensor("add_23_gamma_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(18940992)))]; + tensor add_23_beta_0_to_fp16 = const()[name = tensor("add_23_beta_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(18942080)))]; + tensor add_23_epsilon_0_to_fp16 = const()[name = tensor("add_23_epsilon_0_to_fp16"), val = tensor(0x1.5p-17)]; + tensor add_23_cast = batch_norm(beta = add_23_beta_0_to_fp16, epsilon = add_23_epsilon_0_to_fp16, gamma = add_23_gamma_0_to_fp16, mean = add_19_mean_0_to_fp16, variance = add_19_variance_0_to_fp16, x = reshape_45_cast)[name = tensor("add_23_cast")]; + tensor input_81_cast = silu(x = add_23_cast)[name = tensor("input_81_cast")]; + tensor var_264 = const()[name = tensor("op_264"), val = tensor([1, 1])]; + tensor var_266 = const()[name = tensor("op_266"), val = tensor([1, 1])]; + tensor hidden_states_19_pad_type_0 = const()[name = tensor("hidden_states_19_pad_type_0"), val = tensor("custom")]; + tensor hidden_states_19_pad_0 = const()[name = tensor("hidden_states_19_pad_0"), val = tensor([1, 1, 1, 1])]; + tensor encoder_down_blocks_2_resnets_1_conv2_weight_to_fp16 = const()[name = tensor("encoder_down_blocks_2_resnets_1_conv2_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(18943168)))]; + tensor encoder_down_blocks_2_resnets_1_conv2_bias_to_fp16 = const()[name = tensor("encoder_down_blocks_2_resnets_1_conv2_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(23661824)))]; + tensor hidden_states_19_cast = conv(bias = encoder_down_blocks_2_resnets_1_conv2_bias_to_fp16, dilations = var_266, groups = var_15, pad = hidden_states_19_pad_0, pad_type = hidden_states_19_pad_type_0, strides = var_264, weight = encoder_down_blocks_2_resnets_1_conv2_weight_to_fp16, x = input_81_cast)[name = tensor("hidden_states_19_cast")]; + tensor var_269_cast = add(x = var_239_cast, y = hidden_states_19_cast)[name = tensor("op_269_cast")]; + tensor hidden_states_23_pad_0 = const()[name = tensor("hidden_states_23_pad_0"), val = tensor([0, 0, 0, 0, 0, 1, 0, 1])]; + tensor hidden_states_23_mode_0 = const()[name = tensor("hidden_states_23_mode_0"), val = tensor("constant")]; + tensor hidden_states_23_constant_val_0_to_fp16 = const()[name = tensor("hidden_states_23_constant_val_0_to_fp16"), val = tensor(0x0p+0)]; + tensor hidden_states_23_cast = pad(constant_val = hidden_states_23_constant_val_0_to_fp16, mode = hidden_states_23_mode_0, pad = hidden_states_23_pad_0, x = var_269_cast)[name = tensor("hidden_states_23_cast")]; + tensor var_277 = const()[name = tensor("op_277"), val = tensor([2, 2])]; + tensor var_279 = const()[name = tensor("op_279"), val = tensor([1, 1])]; + tensor input_85_pad_type_0 = const()[name = tensor("input_85_pad_type_0"), val = tensor("custom")]; + tensor input_85_pad_0 = const()[name = tensor("input_85_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor encoder_down_blocks_2_downsamplers_0_conv_weight_to_fp16 = const()[name = tensor("encoder_down_blocks_2_downsamplers_0_conv_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(23662912)))]; + tensor encoder_down_blocks_2_downsamplers_0_conv_bias_to_fp16 = const()[name = tensor("encoder_down_blocks_2_downsamplers_0_conv_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(28381568)))]; + tensor input_85_cast = conv(bias = encoder_down_blocks_2_downsamplers_0_conv_bias_to_fp16, dilations = var_279, groups = var_15, pad = input_85_pad_0, pad_type = input_85_pad_type_0, strides = var_277, weight = encoder_down_blocks_2_downsamplers_0_conv_weight_to_fp16, x = hidden_states_23_cast)[name = tensor("input_85_cast")]; + tensor reshape_48_shape_0 = const()[name = tensor("reshape_48_shape_0"), val = tensor([1, 32, 16, 128, 128])]; + tensor reshape_48_cast = reshape(shape = reshape_48_shape_0, x = input_85_cast)[name = tensor("reshape_48_cast")]; + tensor reduce_mean_36_axes_0 = const()[name = tensor("reduce_mean_36_axes_0"), val = tensor([2, 3, 4])]; + tensor reduce_mean_36_keep_dims_0 = const()[name = tensor("reduce_mean_36_keep_dims_0"), val = tensor(true)]; + tensor reduce_mean_36_cast = reduce_mean(axes = reduce_mean_36_axes_0, keep_dims = reduce_mean_36_keep_dims_0, x = reshape_48_cast)[name = tensor("reduce_mean_36_cast")]; + tensor sub_24_cast = sub(x = reshape_48_cast, y = reduce_mean_36_cast)[name = tensor("sub_24_cast")]; + tensor square_12_cast = square(x = sub_24_cast)[name = tensor("square_12_cast")]; + tensor reduce_mean_38_axes_0 = const()[name = tensor("reduce_mean_38_axes_0"), val = tensor([2, 3, 4])]; + tensor reduce_mean_38_keep_dims_0 = const()[name = tensor("reduce_mean_38_keep_dims_0"), val = tensor(true)]; + tensor reduce_mean_38_cast = reduce_mean(axes = reduce_mean_38_axes_0, keep_dims = reduce_mean_38_keep_dims_0, x = square_12_cast)[name = tensor("reduce_mean_38_cast")]; + tensor add_24_y_0_to_fp16 = const()[name = tensor("add_24_y_0_to_fp16"), val = tensor(0x1.1p-20)]; + tensor add_24_cast = add(x = reduce_mean_38_cast, y = add_24_y_0_to_fp16)[name = tensor("add_24_cast")]; + tensor sqrt_12_cast = sqrt(x = add_24_cast)[name = tensor("sqrt_12_cast")]; + tensor real_div_12_cast = real_div(x = sub_24_cast, y = sqrt_12_cast)[name = tensor("real_div_12_cast")]; + tensor reshape_49_shape_0 = const()[name = tensor("reshape_49_shape_0"), val = tensor([1, 512, 128, 128])]; + tensor reshape_49_cast = reshape(shape = reshape_49_shape_0, x = real_div_12_cast)[name = tensor("reshape_49_cast")]; + tensor add_25_gamma_0_to_fp16 = const()[name = tensor("add_25_gamma_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(28382656)))]; + tensor add_25_beta_0_to_fp16 = const()[name = tensor("add_25_beta_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(28383744)))]; + tensor add_25_epsilon_0_to_fp16 = const()[name = tensor("add_25_epsilon_0_to_fp16"), val = tensor(0x1.5p-17)]; + tensor add_25_cast = batch_norm(beta = add_25_beta_0_to_fp16, epsilon = add_25_epsilon_0_to_fp16, gamma = add_25_gamma_0_to_fp16, mean = add_19_mean_0_to_fp16, variance = add_19_variance_0_to_fp16, x = reshape_49_cast)[name = tensor("add_25_cast")]; + tensor input_89_cast = silu(x = add_25_cast)[name = tensor("input_89_cast")]; + tensor var_296 = const()[name = tensor("op_296"), val = tensor([1, 1])]; + tensor var_298 = const()[name = tensor("op_298"), val = tensor([1, 1])]; + tensor input_91_pad_type_0 = const()[name = tensor("input_91_pad_type_0"), val = tensor("custom")]; + tensor input_91_pad_0 = const()[name = tensor("input_91_pad_0"), val = tensor([1, 1, 1, 1])]; + tensor encoder_down_blocks_3_resnets_0_conv1_weight_to_fp16 = const()[name = tensor("encoder_down_blocks_3_resnets_0_conv1_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(28384832)))]; + tensor encoder_down_blocks_3_resnets_0_conv1_bias_to_fp16 = const()[name = tensor("encoder_down_blocks_3_resnets_0_conv1_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(33103488)))]; + tensor input_91_cast = conv(bias = encoder_down_blocks_3_resnets_0_conv1_bias_to_fp16, dilations = var_298, groups = var_15, pad = input_91_pad_0, pad_type = input_91_pad_type_0, strides = var_296, weight = encoder_down_blocks_3_resnets_0_conv1_weight_to_fp16, x = input_89_cast)[name = tensor("input_91_cast")]; + tensor reshape_52_shape_0 = const()[name = tensor("reshape_52_shape_0"), val = tensor([1, 32, 16, 128, 128])]; + tensor reshape_52_cast = reshape(shape = reshape_52_shape_0, x = input_91_cast)[name = tensor("reshape_52_cast")]; + tensor reduce_mean_39_axes_0 = const()[name = tensor("reduce_mean_39_axes_0"), val = tensor([2, 3, 4])]; + tensor reduce_mean_39_keep_dims_0 = const()[name = tensor("reduce_mean_39_keep_dims_0"), val = tensor(true)]; + tensor reduce_mean_39_cast = reduce_mean(axes = reduce_mean_39_axes_0, keep_dims = reduce_mean_39_keep_dims_0, x = reshape_52_cast)[name = tensor("reduce_mean_39_cast")]; + tensor sub_26_cast = sub(x = reshape_52_cast, y = reduce_mean_39_cast)[name = tensor("sub_26_cast")]; + tensor square_13_cast = square(x = sub_26_cast)[name = tensor("square_13_cast")]; + tensor reduce_mean_41_axes_0 = const()[name = tensor("reduce_mean_41_axes_0"), val = tensor([2, 3, 4])]; + tensor reduce_mean_41_keep_dims_0 = const()[name = tensor("reduce_mean_41_keep_dims_0"), val = tensor(true)]; + tensor reduce_mean_41_cast = reduce_mean(axes = reduce_mean_41_axes_0, keep_dims = reduce_mean_41_keep_dims_0, x = square_13_cast)[name = tensor("reduce_mean_41_cast")]; + tensor add_26_y_0_to_fp16 = const()[name = tensor("add_26_y_0_to_fp16"), val = tensor(0x1.1p-20)]; + tensor add_26_cast = add(x = reduce_mean_41_cast, y = add_26_y_0_to_fp16)[name = tensor("add_26_cast")]; + tensor sqrt_13_cast = sqrt(x = add_26_cast)[name = tensor("sqrt_13_cast")]; + tensor real_div_13_cast = real_div(x = sub_26_cast, y = sqrt_13_cast)[name = tensor("real_div_13_cast")]; + tensor reshape_53_shape_0 = const()[name = tensor("reshape_53_shape_0"), val = tensor([1, 512, 128, 128])]; + tensor reshape_53_cast = reshape(shape = reshape_53_shape_0, x = real_div_13_cast)[name = tensor("reshape_53_cast")]; + tensor add_27_gamma_0_to_fp16 = const()[name = tensor("add_27_gamma_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(33104576)))]; + tensor add_27_beta_0_to_fp16 = const()[name = tensor("add_27_beta_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(33105664)))]; + tensor add_27_epsilon_0_to_fp16 = const()[name = tensor("add_27_epsilon_0_to_fp16"), val = tensor(0x1.5p-17)]; + tensor add_27_cast = batch_norm(beta = add_27_beta_0_to_fp16, epsilon = add_27_epsilon_0_to_fp16, gamma = add_27_gamma_0_to_fp16, mean = add_19_mean_0_to_fp16, variance = add_19_variance_0_to_fp16, x = reshape_53_cast)[name = tensor("add_27_cast")]; + tensor input_95_cast = silu(x = add_27_cast)[name = tensor("input_95_cast")]; + tensor var_308 = const()[name = tensor("op_308"), val = tensor([1, 1])]; + tensor var_310 = const()[name = tensor("op_310"), val = tensor([1, 1])]; + tensor hidden_states_25_pad_type_0 = const()[name = tensor("hidden_states_25_pad_type_0"), val = tensor("custom")]; + tensor hidden_states_25_pad_0 = const()[name = tensor("hidden_states_25_pad_0"), val = tensor([1, 1, 1, 1])]; + tensor encoder_down_blocks_3_resnets_0_conv2_weight_to_fp16 = const()[name = tensor("encoder_down_blocks_3_resnets_0_conv2_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(33106752)))]; + tensor encoder_down_blocks_3_resnets_0_conv2_bias_to_fp16 = const()[name = tensor("encoder_down_blocks_3_resnets_0_conv2_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(37825408)))]; + tensor hidden_states_25_cast = conv(bias = encoder_down_blocks_3_resnets_0_conv2_bias_to_fp16, dilations = var_310, groups = var_15, pad = hidden_states_25_pad_0, pad_type = hidden_states_25_pad_type_0, strides = var_308, weight = encoder_down_blocks_3_resnets_0_conv2_weight_to_fp16, x = input_95_cast)[name = tensor("hidden_states_25_cast")]; + tensor var_313_cast = add(x = input_85_cast, y = hidden_states_25_cast)[name = tensor("op_313_cast")]; + tensor reshape_56_shape_0 = const()[name = tensor("reshape_56_shape_0"), val = tensor([1, 32, 16, 128, 128])]; + tensor reshape_56_cast = reshape(shape = reshape_56_shape_0, x = var_313_cast)[name = tensor("reshape_56_cast")]; + tensor reduce_mean_42_axes_0 = const()[name = tensor("reduce_mean_42_axes_0"), val = tensor([2, 3, 4])]; + tensor reduce_mean_42_keep_dims_0 = const()[name = tensor("reduce_mean_42_keep_dims_0"), val = tensor(true)]; + tensor reduce_mean_42_cast = reduce_mean(axes = reduce_mean_42_axes_0, keep_dims = reduce_mean_42_keep_dims_0, x = reshape_56_cast)[name = tensor("reduce_mean_42_cast")]; + tensor sub_28_cast = sub(x = reshape_56_cast, y = reduce_mean_42_cast)[name = tensor("sub_28_cast")]; + tensor square_14_cast = square(x = sub_28_cast)[name = tensor("square_14_cast")]; + tensor reduce_mean_44_axes_0 = const()[name = tensor("reduce_mean_44_axes_0"), val = tensor([2, 3, 4])]; + tensor reduce_mean_44_keep_dims_0 = const()[name = tensor("reduce_mean_44_keep_dims_0"), val = tensor(true)]; + tensor reduce_mean_44_cast = reduce_mean(axes = reduce_mean_44_axes_0, keep_dims = reduce_mean_44_keep_dims_0, x = square_14_cast)[name = tensor("reduce_mean_44_cast")]; + tensor add_28_y_0_to_fp16 = const()[name = tensor("add_28_y_0_to_fp16"), val = tensor(0x1.1p-20)]; + tensor add_28_cast = add(x = reduce_mean_44_cast, y = add_28_y_0_to_fp16)[name = tensor("add_28_cast")]; + tensor sqrt_14_cast = sqrt(x = add_28_cast)[name = tensor("sqrt_14_cast")]; + tensor real_div_14_cast = real_div(x = sub_28_cast, y = sqrt_14_cast)[name = tensor("real_div_14_cast")]; + tensor reshape_57_shape_0 = const()[name = tensor("reshape_57_shape_0"), val = tensor([1, 512, 128, 128])]; + tensor reshape_57_cast = reshape(shape = reshape_57_shape_0, x = real_div_14_cast)[name = tensor("reshape_57_cast")]; + tensor add_29_gamma_0_to_fp16 = const()[name = tensor("add_29_gamma_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(37826496)))]; + tensor add_29_beta_0_to_fp16 = const()[name = tensor("add_29_beta_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(37827584)))]; + tensor add_29_epsilon_0_to_fp16 = const()[name = tensor("add_29_epsilon_0_to_fp16"), val = tensor(0x1.5p-17)]; + tensor add_29_cast = batch_norm(beta = add_29_beta_0_to_fp16, epsilon = add_29_epsilon_0_to_fp16, gamma = add_29_gamma_0_to_fp16, mean = add_19_mean_0_to_fp16, variance = add_19_variance_0_to_fp16, x = reshape_57_cast)[name = tensor("add_29_cast")]; + tensor input_103_cast = silu(x = add_29_cast)[name = tensor("input_103_cast")]; + tensor var_326 = const()[name = tensor("op_326"), val = tensor([1, 1])]; + tensor var_328 = const()[name = tensor("op_328"), val = tensor([1, 1])]; + tensor input_105_pad_type_0 = const()[name = tensor("input_105_pad_type_0"), val = tensor("custom")]; + tensor input_105_pad_0 = const()[name = tensor("input_105_pad_0"), val = tensor([1, 1, 1, 1])]; + tensor encoder_down_blocks_3_resnets_1_conv1_weight_to_fp16 = const()[name = tensor("encoder_down_blocks_3_resnets_1_conv1_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(37828672)))]; + tensor encoder_down_blocks_3_resnets_1_conv1_bias_to_fp16 = const()[name = tensor("encoder_down_blocks_3_resnets_1_conv1_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(42547328)))]; + tensor input_105_cast = conv(bias = encoder_down_blocks_3_resnets_1_conv1_bias_to_fp16, dilations = var_328, groups = var_15, pad = input_105_pad_0, pad_type = input_105_pad_type_0, strides = var_326, weight = encoder_down_blocks_3_resnets_1_conv1_weight_to_fp16, x = input_103_cast)[name = tensor("input_105_cast")]; + tensor reshape_60_shape_0 = const()[name = tensor("reshape_60_shape_0"), val = tensor([1, 32, 16, 128, 128])]; + tensor reshape_60_cast = reshape(shape = reshape_60_shape_0, x = input_105_cast)[name = tensor("reshape_60_cast")]; + tensor reduce_mean_45_axes_0 = const()[name = tensor("reduce_mean_45_axes_0"), val = tensor([2, 3, 4])]; + tensor reduce_mean_45_keep_dims_0 = const()[name = tensor("reduce_mean_45_keep_dims_0"), val = tensor(true)]; + tensor reduce_mean_45_cast = reduce_mean(axes = reduce_mean_45_axes_0, keep_dims = reduce_mean_45_keep_dims_0, x = reshape_60_cast)[name = tensor("reduce_mean_45_cast")]; + tensor sub_30_cast = sub(x = reshape_60_cast, y = reduce_mean_45_cast)[name = tensor("sub_30_cast")]; + tensor square_15_cast = square(x = sub_30_cast)[name = tensor("square_15_cast")]; + tensor reduce_mean_47_axes_0 = const()[name = tensor("reduce_mean_47_axes_0"), val = tensor([2, 3, 4])]; + tensor reduce_mean_47_keep_dims_0 = const()[name = tensor("reduce_mean_47_keep_dims_0"), val = tensor(true)]; + tensor reduce_mean_47_cast = reduce_mean(axes = reduce_mean_47_axes_0, keep_dims = reduce_mean_47_keep_dims_0, x = square_15_cast)[name = tensor("reduce_mean_47_cast")]; + tensor add_30_y_0_to_fp16 = const()[name = tensor("add_30_y_0_to_fp16"), val = tensor(0x1.1p-20)]; + tensor add_30_cast = add(x = reduce_mean_47_cast, y = add_30_y_0_to_fp16)[name = tensor("add_30_cast")]; + tensor sqrt_15_cast = sqrt(x = add_30_cast)[name = tensor("sqrt_15_cast")]; + tensor real_div_15_cast = real_div(x = sub_30_cast, y = sqrt_15_cast)[name = tensor("real_div_15_cast")]; + tensor reshape_61_shape_0 = const()[name = tensor("reshape_61_shape_0"), val = tensor([1, 512, 128, 128])]; + tensor reshape_61_cast = reshape(shape = reshape_61_shape_0, x = real_div_15_cast)[name = tensor("reshape_61_cast")]; + tensor add_31_gamma_0_to_fp16 = const()[name = tensor("add_31_gamma_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(42548416)))]; + tensor add_31_beta_0_to_fp16 = const()[name = tensor("add_31_beta_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(42549504)))]; + tensor add_31_epsilon_0_to_fp16 = const()[name = tensor("add_31_epsilon_0_to_fp16"), val = tensor(0x1.5p-17)]; + tensor add_31_cast = batch_norm(beta = add_31_beta_0_to_fp16, epsilon = add_31_epsilon_0_to_fp16, gamma = add_31_gamma_0_to_fp16, mean = add_19_mean_0_to_fp16, variance = add_19_variance_0_to_fp16, x = reshape_61_cast)[name = tensor("add_31_cast")]; + tensor input_109_cast = silu(x = add_31_cast)[name = tensor("input_109_cast")]; + tensor var_338 = const()[name = tensor("op_338"), val = tensor([1, 1])]; + tensor var_340 = const()[name = tensor("op_340"), val = tensor([1, 1])]; + tensor hidden_states_27_pad_type_0 = const()[name = tensor("hidden_states_27_pad_type_0"), val = tensor("custom")]; + tensor hidden_states_27_pad_0 = const()[name = tensor("hidden_states_27_pad_0"), val = tensor([1, 1, 1, 1])]; + tensor encoder_down_blocks_3_resnets_1_conv2_weight_to_fp16 = const()[name = tensor("encoder_down_blocks_3_resnets_1_conv2_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(42550592)))]; + tensor encoder_down_blocks_3_resnets_1_conv2_bias_to_fp16 = const()[name = tensor("encoder_down_blocks_3_resnets_1_conv2_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(47269248)))]; + tensor hidden_states_27_cast = conv(bias = encoder_down_blocks_3_resnets_1_conv2_bias_to_fp16, dilations = var_340, groups = var_15, pad = hidden_states_27_pad_0, pad_type = hidden_states_27_pad_type_0, strides = var_338, weight = encoder_down_blocks_3_resnets_1_conv2_weight_to_fp16, x = input_109_cast)[name = tensor("hidden_states_27_cast")]; + tensor var_343_cast = add(x = var_313_cast, y = hidden_states_27_cast)[name = tensor("op_343_cast")]; + tensor reshape_64_shape_0 = const()[name = tensor("reshape_64_shape_0"), val = tensor([1, 32, 16, 128, 128])]; + tensor reshape_64_cast = reshape(shape = reshape_64_shape_0, x = var_343_cast)[name = tensor("reshape_64_cast")]; + tensor reduce_mean_48_axes_0 = const()[name = tensor("reduce_mean_48_axes_0"), val = tensor([2, 3, 4])]; + tensor reduce_mean_48_keep_dims_0 = const()[name = tensor("reduce_mean_48_keep_dims_0"), val = tensor(true)]; + tensor reduce_mean_48_cast = reduce_mean(axes = reduce_mean_48_axes_0, keep_dims = reduce_mean_48_keep_dims_0, x = reshape_64_cast)[name = tensor("reduce_mean_48_cast")]; + tensor sub_32_cast = sub(x = reshape_64_cast, y = reduce_mean_48_cast)[name = tensor("sub_32_cast")]; + tensor square_16_cast = square(x = sub_32_cast)[name = tensor("square_16_cast")]; + tensor reduce_mean_50_axes_0 = const()[name = tensor("reduce_mean_50_axes_0"), val = tensor([2, 3, 4])]; + tensor reduce_mean_50_keep_dims_0 = const()[name = tensor("reduce_mean_50_keep_dims_0"), val = tensor(true)]; + tensor reduce_mean_50_cast = reduce_mean(axes = reduce_mean_50_axes_0, keep_dims = reduce_mean_50_keep_dims_0, x = square_16_cast)[name = tensor("reduce_mean_50_cast")]; + tensor add_32_y_0_to_fp16 = const()[name = tensor("add_32_y_0_to_fp16"), val = tensor(0x1.1p-20)]; + tensor add_32_cast = add(x = reduce_mean_50_cast, y = add_32_y_0_to_fp16)[name = tensor("add_32_cast")]; + tensor sqrt_16_cast = sqrt(x = add_32_cast)[name = tensor("sqrt_16_cast")]; + tensor real_div_16_cast = real_div(x = sub_32_cast, y = sqrt_16_cast)[name = tensor("real_div_16_cast")]; + tensor reshape_65_shape_0 = const()[name = tensor("reshape_65_shape_0"), val = tensor([1, 512, 128, 128])]; + tensor reshape_65_cast = reshape(shape = reshape_65_shape_0, x = real_div_16_cast)[name = tensor("reshape_65_cast")]; + tensor add_33_gamma_0_to_fp16 = const()[name = tensor("add_33_gamma_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(47270336)))]; + tensor add_33_beta_0_to_fp16 = const()[name = tensor("add_33_beta_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(47271424)))]; + tensor add_33_epsilon_0_to_fp16 = const()[name = tensor("add_33_epsilon_0_to_fp16"), val = tensor(0x1.5p-17)]; + tensor add_33_cast = batch_norm(beta = add_33_beta_0_to_fp16, epsilon = add_33_epsilon_0_to_fp16, gamma = add_33_gamma_0_to_fp16, mean = add_19_mean_0_to_fp16, variance = add_19_variance_0_to_fp16, x = reshape_65_cast)[name = tensor("add_33_cast")]; + tensor input_117_cast = silu(x = add_33_cast)[name = tensor("input_117_cast")]; + tensor var_362 = const()[name = tensor("op_362"), val = tensor([1, 1])]; + tensor var_364 = const()[name = tensor("op_364"), val = tensor([1, 1])]; + tensor input_119_pad_type_0 = const()[name = tensor("input_119_pad_type_0"), val = tensor("custom")]; + tensor input_119_pad_0 = const()[name = tensor("input_119_pad_0"), val = tensor([1, 1, 1, 1])]; + tensor encoder_mid_block_resnets_0_conv1_weight_to_fp16 = const()[name = tensor("encoder_mid_block_resnets_0_conv1_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(47272512)))]; + tensor encoder_mid_block_resnets_0_conv1_bias_to_fp16 = const()[name = tensor("encoder_mid_block_resnets_0_conv1_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(51991168)))]; + tensor input_119_cast = conv(bias = encoder_mid_block_resnets_0_conv1_bias_to_fp16, dilations = var_364, groups = var_15, pad = input_119_pad_0, pad_type = input_119_pad_type_0, strides = var_362, weight = encoder_mid_block_resnets_0_conv1_weight_to_fp16, x = input_117_cast)[name = tensor("input_119_cast")]; + tensor reshape_68_shape_0 = const()[name = tensor("reshape_68_shape_0"), val = tensor([1, 32, 16, 128, 128])]; + tensor reshape_68_cast = reshape(shape = reshape_68_shape_0, x = input_119_cast)[name = tensor("reshape_68_cast")]; + tensor reduce_mean_51_axes_0 = const()[name = tensor("reduce_mean_51_axes_0"), val = tensor([2, 3, 4])]; + tensor reduce_mean_51_keep_dims_0 = const()[name = tensor("reduce_mean_51_keep_dims_0"), val = tensor(true)]; + tensor reduce_mean_51_cast = reduce_mean(axes = reduce_mean_51_axes_0, keep_dims = reduce_mean_51_keep_dims_0, x = reshape_68_cast)[name = tensor("reduce_mean_51_cast")]; + tensor sub_34_cast = sub(x = reshape_68_cast, y = reduce_mean_51_cast)[name = tensor("sub_34_cast")]; + tensor square_17_cast = square(x = sub_34_cast)[name = tensor("square_17_cast")]; + tensor reduce_mean_53_axes_0 = const()[name = tensor("reduce_mean_53_axes_0"), val = tensor([2, 3, 4])]; + tensor reduce_mean_53_keep_dims_0 = const()[name = tensor("reduce_mean_53_keep_dims_0"), val = tensor(true)]; + tensor reduce_mean_53_cast = reduce_mean(axes = reduce_mean_53_axes_0, keep_dims = reduce_mean_53_keep_dims_0, x = square_17_cast)[name = tensor("reduce_mean_53_cast")]; + tensor add_34_y_0_to_fp16 = const()[name = tensor("add_34_y_0_to_fp16"), val = tensor(0x1.1p-20)]; + tensor add_34_cast = add(x = reduce_mean_53_cast, y = add_34_y_0_to_fp16)[name = tensor("add_34_cast")]; + tensor sqrt_17_cast = sqrt(x = add_34_cast)[name = tensor("sqrt_17_cast")]; + tensor real_div_17_cast = real_div(x = sub_34_cast, y = sqrt_17_cast)[name = tensor("real_div_17_cast")]; + tensor reshape_69_shape_0 = const()[name = tensor("reshape_69_shape_0"), val = tensor([1, 512, 128, 128])]; + tensor reshape_69_cast = reshape(shape = reshape_69_shape_0, x = real_div_17_cast)[name = tensor("reshape_69_cast")]; + tensor add_35_gamma_0_to_fp16 = const()[name = tensor("add_35_gamma_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(51992256)))]; + tensor add_35_beta_0_to_fp16 = const()[name = tensor("add_35_beta_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(51993344)))]; + tensor add_35_epsilon_0_to_fp16 = const()[name = tensor("add_35_epsilon_0_to_fp16"), val = tensor(0x1.5p-17)]; + tensor add_35_cast = batch_norm(beta = add_35_beta_0_to_fp16, epsilon = add_35_epsilon_0_to_fp16, gamma = add_35_gamma_0_to_fp16, mean = add_19_mean_0_to_fp16, variance = add_19_variance_0_to_fp16, x = reshape_69_cast)[name = tensor("add_35_cast")]; + tensor input_123_cast = silu(x = add_35_cast)[name = tensor("input_123_cast")]; + tensor var_374 = const()[name = tensor("op_374"), val = tensor([1, 1])]; + tensor var_376 = const()[name = tensor("op_376"), val = tensor([1, 1])]; + tensor hidden_states_29_pad_type_0 = const()[name = tensor("hidden_states_29_pad_type_0"), val = tensor("custom")]; + tensor hidden_states_29_pad_0 = const()[name = tensor("hidden_states_29_pad_0"), val = tensor([1, 1, 1, 1])]; + tensor encoder_mid_block_resnets_0_conv2_weight_to_fp16 = const()[name = tensor("encoder_mid_block_resnets_0_conv2_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(51994432)))]; + tensor encoder_mid_block_resnets_0_conv2_bias_to_fp16 = const()[name = tensor("encoder_mid_block_resnets_0_conv2_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(56713088)))]; + tensor hidden_states_29_cast = conv(bias = encoder_mid_block_resnets_0_conv2_bias_to_fp16, dilations = var_376, groups = var_15, pad = hidden_states_29_pad_0, pad_type = hidden_states_29_pad_type_0, strides = var_374, weight = encoder_mid_block_resnets_0_conv2_weight_to_fp16, x = input_123_cast)[name = tensor("hidden_states_29_cast")]; + tensor var_379_cast = add(x = var_343_cast, y = hidden_states_29_cast)[name = tensor("op_379_cast")]; + tensor reshape_72_shape_0 = const()[name = tensor("reshape_72_shape_0"), val = tensor([1, 32, 16, 16384])]; + tensor reshape_72_cast = reshape(shape = reshape_72_shape_0, x = var_379_cast)[name = tensor("reshape_72_cast")]; + tensor reduce_mean_54_axes_0 = const()[name = tensor("reduce_mean_54_axes_0"), val = tensor([2, 3])]; + tensor reduce_mean_54_keep_dims_0 = const()[name = tensor("reduce_mean_54_keep_dims_0"), val = tensor(true)]; + tensor reduce_mean_54_cast = reduce_mean(axes = reduce_mean_54_axes_0, keep_dims = reduce_mean_54_keep_dims_0, x = reshape_72_cast)[name = tensor("reduce_mean_54_cast")]; + tensor sub_36_cast = sub(x = reshape_72_cast, y = reduce_mean_54_cast)[name = tensor("sub_36_cast")]; + tensor square_18_cast = square(x = sub_36_cast)[name = tensor("square_18_cast")]; + tensor reduce_mean_56_axes_0 = const()[name = tensor("reduce_mean_56_axes_0"), val = tensor([2, 3])]; + tensor reduce_mean_56_keep_dims_0 = const()[name = tensor("reduce_mean_56_keep_dims_0"), val = tensor(true)]; + tensor reduce_mean_56_cast = reduce_mean(axes = reduce_mean_56_axes_0, keep_dims = reduce_mean_56_keep_dims_0, x = square_18_cast)[name = tensor("reduce_mean_56_cast")]; + tensor add_36_y_0_to_fp16 = const()[name = tensor("add_36_y_0_to_fp16"), val = tensor(0x1.1p-20)]; + tensor add_36_cast = add(x = reduce_mean_56_cast, y = add_36_y_0_to_fp16)[name = tensor("add_36_cast")]; + tensor sqrt_18_cast = sqrt(x = add_36_cast)[name = tensor("sqrt_18_cast")]; + tensor real_div_18_cast = real_div(x = sub_36_cast, y = sqrt_18_cast)[name = tensor("real_div_18_cast")]; + tensor reshape_73_shape_0 = const()[name = tensor("reshape_73_shape_0"), val = tensor([1, 512, 16384])]; + tensor reshape_73_cast = reshape(shape = reshape_73_shape_0, x = real_div_18_cast)[name = tensor("reshape_73_cast")]; + tensor reshape_74_to_fp16 = const()[name = tensor("reshape_74_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(56714176)))]; + tensor mul_18_cast = mul(x = reshape_73_cast, y = reshape_74_to_fp16)[name = tensor("mul_18_cast")]; + tensor reshape_75_to_fp16 = const()[name = tensor("reshape_75_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(56715264)))]; + tensor add_37_cast = add(x = mul_18_cast, y = reshape_75_to_fp16)[name = tensor("add_37_cast")]; + tensor input_129_perm_0 = const()[name = tensor("input_129_perm_0"), val = tensor([0, 2, 1])]; + tensor encoder_mid_block_attentions_0_to_q_weight_to_fp16 = const()[name = tensor("encoder_mid_block_attentions_0_to_q_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(56716352)))]; + tensor encoder_mid_block_attentions_0_to_q_bias_to_fp16 = const()[name = tensor("encoder_mid_block_attentions_0_to_q_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(57240704)))]; + tensor transpose_9 = transpose(perm = input_129_perm_0, x = add_37_cast)[name = tensor("transpose_9")]; + tensor query_1_cast = linear(bias = encoder_mid_block_attentions_0_to_q_bias_to_fp16, weight = encoder_mid_block_attentions_0_to_q_weight_to_fp16, x = transpose_9)[name = tensor("query_1_cast")]; + tensor encoder_mid_block_attentions_0_to_k_weight_to_fp16 = const()[name = tensor("encoder_mid_block_attentions_0_to_k_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(57241792)))]; + tensor encoder_mid_block_attentions_0_to_k_bias_to_fp16 = const()[name = tensor("encoder_mid_block_attentions_0_to_k_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(57766144)))]; + tensor key_1_cast = linear(bias = encoder_mid_block_attentions_0_to_k_bias_to_fp16, weight = encoder_mid_block_attentions_0_to_k_weight_to_fp16, x = transpose_9)[name = tensor("key_1_cast")]; + tensor encoder_mid_block_attentions_0_to_v_weight_to_fp16 = const()[name = tensor("encoder_mid_block_attentions_0_to_v_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(57767232)))]; + tensor encoder_mid_block_attentions_0_to_v_bias_to_fp16 = const()[name = tensor("encoder_mid_block_attentions_0_to_v_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(58291584)))]; + tensor value_1_cast = linear(bias = encoder_mid_block_attentions_0_to_v_bias_to_fp16, weight = encoder_mid_block_attentions_0_to_v_weight_to_fp16, x = transpose_9)[name = tensor("value_1_cast")]; + tensor var_420 = const()[name = tensor("op_420"), val = tensor([1, -1, 1, 512])]; + tensor var_421_cast = reshape(shape = var_420, x = query_1_cast)[name = tensor("op_421_cast")]; + tensor var_423 = const()[name = tensor("op_423"), val = tensor([1, -1, 1, 512])]; + tensor var_424_cast = reshape(shape = var_423, x = key_1_cast)[name = tensor("op_424_cast")]; + tensor var_426 = const()[name = tensor("op_426"), val = tensor([1, -1, 1, 512])]; + tensor var_427_cast = reshape(shape = var_426, x = value_1_cast)[name = tensor("op_427_cast")]; + tensor value_perm_0 = const()[name = tensor("value_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor mul_19_y_0_to_fp16 = const()[name = tensor("mul_19_y_0_to_fp16"), val = tensor(0x1.6ap-5)]; + tensor mul_19_cast = mul(x = var_421_cast, y = mul_19_y_0_to_fp16)[name = tensor("mul_19_cast")]; + tensor matmul_0_transpose_y_0 = const()[name = tensor("matmul_0_transpose_y_0"), val = tensor(true)]; + tensor matmul_0_transpose_x_0 = const()[name = tensor("matmul_0_transpose_x_0"), val = tensor(false)]; + tensor transpose_2_perm_0 = const()[name = tensor("transpose_2_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor transpose_3_perm_0 = const()[name = tensor("transpose_3_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor transpose_6 = transpose(perm = transpose_3_perm_0, x = var_424_cast)[name = tensor("transpose_6")]; + tensor transpose_7 = transpose(perm = transpose_2_perm_0, x = mul_19_cast)[name = tensor("transpose_7")]; + tensor matmul_0_cast = matmul(transpose_x = matmul_0_transpose_x_0, transpose_y = matmul_0_transpose_y_0, x = transpose_7, y = transpose_6)[name = tensor("matmul_0_cast")]; + tensor softmax_0_axis_0 = const()[name = tensor("softmax_0_axis_0"), val = tensor(-1)]; + tensor softmax_0_cast = softmax(axis = softmax_0_axis_0, x = matmul_0_cast)[name = tensor("softmax_0_cast")]; + tensor hidden_states_35_transpose_x_0 = const()[name = tensor("hidden_states_35_transpose_x_0"), val = tensor(false)]; + tensor hidden_states_35_transpose_y_0 = const()[name = tensor("hidden_states_35_transpose_y_0"), val = tensor(false)]; + tensor transpose_8 = transpose(perm = value_perm_0, x = var_427_cast)[name = tensor("transpose_8")]; + tensor hidden_states_35_cast = matmul(transpose_x = hidden_states_35_transpose_x_0, transpose_y = hidden_states_35_transpose_y_0, x = softmax_0_cast, y = transpose_8)[name = tensor("hidden_states_35_cast")]; + tensor var_430_perm_0 = const()[name = tensor("op_430_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor var_434 = const()[name = tensor("op_434"), val = tensor([1, -1, 512])]; + tensor transpose_5 = transpose(perm = var_430_perm_0, x = hidden_states_35_cast)[name = tensor("transpose_5")]; + tensor hidden_states_37_cast = reshape(shape = var_434, x = transpose_5)[name = tensor("hidden_states_37_cast")]; + tensor encoder_mid_block_attentions_0_to_out_0_weight_to_fp16 = const()[name = tensor("encoder_mid_block_attentions_0_to_out_0_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(58292672)))]; + tensor encoder_mid_block_attentions_0_to_out_0_bias_to_fp16 = const()[name = tensor("encoder_mid_block_attentions_0_to_out_0_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(58817024)))]; + tensor input_133_cast = linear(bias = encoder_mid_block_attentions_0_to_out_0_bias_to_fp16, weight = encoder_mid_block_attentions_0_to_out_0_weight_to_fp16, x = hidden_states_37_cast)[name = tensor("input_133_cast")]; + tensor var_441_perm_0 = const()[name = tensor("op_441_perm_0"), val = tensor([0, -1, -2])]; + tensor var_442 = const()[name = tensor("op_442"), val = tensor([1, 512, 128, 128])]; + tensor transpose_4 = transpose(perm = var_441_perm_0, x = input_133_cast)[name = tensor("transpose_4")]; + tensor hidden_states_41_cast = reshape(shape = var_442, x = transpose_4)[name = tensor("hidden_states_41_cast")]; + tensor hidden_states_43_cast = add(x = hidden_states_41_cast, y = var_379_cast)[name = tensor("hidden_states_43_cast")]; + tensor reshape_76_shape_0 = const()[name = tensor("reshape_76_shape_0"), val = tensor([1, 32, 16, 128, 128])]; + tensor reshape_76_cast = reshape(shape = reshape_76_shape_0, x = hidden_states_43_cast)[name = tensor("reshape_76_cast")]; + tensor reduce_mean_57_axes_0 = const()[name = tensor("reduce_mean_57_axes_0"), val = tensor([2, 3, 4])]; + tensor reduce_mean_57_keep_dims_0 = const()[name = tensor("reduce_mean_57_keep_dims_0"), val = tensor(true)]; + tensor reduce_mean_57_cast = reduce_mean(axes = reduce_mean_57_axes_0, keep_dims = reduce_mean_57_keep_dims_0, x = reshape_76_cast)[name = tensor("reduce_mean_57_cast")]; + tensor sub_38_cast = sub(x = reshape_76_cast, y = reduce_mean_57_cast)[name = tensor("sub_38_cast")]; + tensor square_19_cast = square(x = sub_38_cast)[name = tensor("square_19_cast")]; + tensor reduce_mean_59_axes_0 = const()[name = tensor("reduce_mean_59_axes_0"), val = tensor([2, 3, 4])]; + tensor reduce_mean_59_keep_dims_0 = const()[name = tensor("reduce_mean_59_keep_dims_0"), val = tensor(true)]; + tensor reduce_mean_59_cast = reduce_mean(axes = reduce_mean_59_axes_0, keep_dims = reduce_mean_59_keep_dims_0, x = square_19_cast)[name = tensor("reduce_mean_59_cast")]; + tensor add_38_y_0_to_fp16 = const()[name = tensor("add_38_y_0_to_fp16"), val = tensor(0x1.1p-20)]; + tensor add_38_cast = add(x = reduce_mean_59_cast, y = add_38_y_0_to_fp16)[name = tensor("add_38_cast")]; + tensor sqrt_19_cast = sqrt(x = add_38_cast)[name = tensor("sqrt_19_cast")]; + tensor real_div_19_cast = real_div(x = sub_38_cast, y = sqrt_19_cast)[name = tensor("real_div_19_cast")]; + tensor reshape_77_shape_0 = const()[name = tensor("reshape_77_shape_0"), val = tensor([1, 512, 128, 128])]; + tensor reshape_77_cast = reshape(shape = reshape_77_shape_0, x = real_div_19_cast)[name = tensor("reshape_77_cast")]; + tensor add_39_gamma_0_to_fp16 = const()[name = tensor("add_39_gamma_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(58818112)))]; + tensor add_39_beta_0_to_fp16 = const()[name = tensor("add_39_beta_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(58819200)))]; + tensor add_39_epsilon_0_to_fp16 = const()[name = tensor("add_39_epsilon_0_to_fp16"), val = tensor(0x1.5p-17)]; + tensor add_39_cast = batch_norm(beta = add_39_beta_0_to_fp16, epsilon = add_39_epsilon_0_to_fp16, gamma = add_39_gamma_0_to_fp16, mean = add_19_mean_0_to_fp16, variance = add_19_variance_0_to_fp16, x = reshape_77_cast)[name = tensor("add_39_cast")]; + tensor input_139_cast = silu(x = add_39_cast)[name = tensor("input_139_cast")]; + tensor var_457 = const()[name = tensor("op_457"), val = tensor([1, 1])]; + tensor var_459 = const()[name = tensor("op_459"), val = tensor([1, 1])]; + tensor input_141_pad_type_0 = const()[name = tensor("input_141_pad_type_0"), val = tensor("custom")]; + tensor input_141_pad_0 = const()[name = tensor("input_141_pad_0"), val = tensor([1, 1, 1, 1])]; + tensor encoder_mid_block_resnets_1_conv1_weight_to_fp16 = const()[name = tensor("encoder_mid_block_resnets_1_conv1_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(58820288)))]; + tensor encoder_mid_block_resnets_1_conv1_bias_to_fp16 = const()[name = tensor("encoder_mid_block_resnets_1_conv1_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(63538944)))]; + tensor input_141_cast = conv(bias = encoder_mid_block_resnets_1_conv1_bias_to_fp16, dilations = var_459, groups = var_15, pad = input_141_pad_0, pad_type = input_141_pad_type_0, strides = var_457, weight = encoder_mid_block_resnets_1_conv1_weight_to_fp16, x = input_139_cast)[name = tensor("input_141_cast")]; + tensor reshape_80_shape_0 = const()[name = tensor("reshape_80_shape_0"), val = tensor([1, 32, 16, 128, 128])]; + tensor reshape_80_cast = reshape(shape = reshape_80_shape_0, x = input_141_cast)[name = tensor("reshape_80_cast")]; + tensor reduce_mean_60_axes_0 = const()[name = tensor("reduce_mean_60_axes_0"), val = tensor([2, 3, 4])]; + tensor reduce_mean_60_keep_dims_0 = const()[name = tensor("reduce_mean_60_keep_dims_0"), val = tensor(true)]; + tensor reduce_mean_60_cast = reduce_mean(axes = reduce_mean_60_axes_0, keep_dims = reduce_mean_60_keep_dims_0, x = reshape_80_cast)[name = tensor("reduce_mean_60_cast")]; + tensor sub_40_cast = sub(x = reshape_80_cast, y = reduce_mean_60_cast)[name = tensor("sub_40_cast")]; + tensor square_20_cast = square(x = sub_40_cast)[name = tensor("square_20_cast")]; + tensor reduce_mean_62_axes_0 = const()[name = tensor("reduce_mean_62_axes_0"), val = tensor([2, 3, 4])]; + tensor reduce_mean_62_keep_dims_0 = const()[name = tensor("reduce_mean_62_keep_dims_0"), val = tensor(true)]; + tensor reduce_mean_62_cast = reduce_mean(axes = reduce_mean_62_axes_0, keep_dims = reduce_mean_62_keep_dims_0, x = square_20_cast)[name = tensor("reduce_mean_62_cast")]; + tensor add_40_y_0_to_fp16 = const()[name = tensor("add_40_y_0_to_fp16"), val = tensor(0x1.1p-20)]; + tensor add_40_cast = add(x = reduce_mean_62_cast, y = add_40_y_0_to_fp16)[name = tensor("add_40_cast")]; + tensor sqrt_20_cast = sqrt(x = add_40_cast)[name = tensor("sqrt_20_cast")]; + tensor real_div_20_cast = real_div(x = sub_40_cast, y = sqrt_20_cast)[name = tensor("real_div_20_cast")]; + tensor reshape_81_shape_0 = const()[name = tensor("reshape_81_shape_0"), val = tensor([1, 512, 128, 128])]; + tensor reshape_81_cast = reshape(shape = reshape_81_shape_0, x = real_div_20_cast)[name = tensor("reshape_81_cast")]; + tensor add_41_gamma_0_to_fp16 = const()[name = tensor("add_41_gamma_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(63540032)))]; + tensor add_41_beta_0_to_fp16 = const()[name = tensor("add_41_beta_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(63541120)))]; + tensor add_41_epsilon_0_to_fp16 = const()[name = tensor("add_41_epsilon_0_to_fp16"), val = tensor(0x1.5p-17)]; + tensor add_41_cast = batch_norm(beta = add_41_beta_0_to_fp16, epsilon = add_41_epsilon_0_to_fp16, gamma = add_41_gamma_0_to_fp16, mean = add_19_mean_0_to_fp16, variance = add_19_variance_0_to_fp16, x = reshape_81_cast)[name = tensor("add_41_cast")]; + tensor input_145_cast = silu(x = add_41_cast)[name = tensor("input_145_cast")]; + tensor var_469 = const()[name = tensor("op_469"), val = tensor([1, 1])]; + tensor var_471 = const()[name = tensor("op_471"), val = tensor([1, 1])]; + tensor hidden_states_pad_type_0 = const()[name = tensor("hidden_states_pad_type_0"), val = tensor("custom")]; + tensor hidden_states_pad_0 = const()[name = tensor("hidden_states_pad_0"), val = tensor([1, 1, 1, 1])]; + tensor encoder_mid_block_resnets_1_conv2_weight_to_fp16 = const()[name = tensor("encoder_mid_block_resnets_1_conv2_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(63542208)))]; + tensor encoder_mid_block_resnets_1_conv2_bias_to_fp16 = const()[name = tensor("encoder_mid_block_resnets_1_conv2_bias_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(68260864)))]; + tensor hidden_states_cast = conv(bias = encoder_mid_block_resnets_1_conv2_bias_to_fp16, dilations = var_471, groups = var_15, pad = hidden_states_pad_0, pad_type = hidden_states_pad_type_0, strides = var_469, weight = encoder_mid_block_resnets_1_conv2_weight_to_fp16, x = input_145_cast)[name = tensor("hidden_states_cast")]; + tensor var_474_cast = add(x = hidden_states_43_cast, y = hidden_states_cast)[name = tensor("op_474_cast")]; + tensor reshape_84_shape_0 = const()[name = tensor("reshape_84_shape_0"), val = tensor([1, 32, 16, 128, 128])]; + tensor reshape_84_cast = reshape(shape = reshape_84_shape_0, x = var_474_cast)[name = tensor("reshape_84_cast")]; + tensor reduce_mean_63_axes_0 = const()[name = tensor("reduce_mean_63_axes_0"), val = tensor([2, 3, 4])]; + tensor reduce_mean_63_keep_dims_0 = const()[name = tensor("reduce_mean_63_keep_dims_0"), val = tensor(true)]; + tensor reduce_mean_63_cast = reduce_mean(axes = reduce_mean_63_axes_0, keep_dims = reduce_mean_63_keep_dims_0, x = reshape_84_cast)[name = tensor("reduce_mean_63_cast")]; + tensor sub_42_cast = sub(x = reshape_84_cast, y = reduce_mean_63_cast)[name = tensor("sub_42_cast")]; + tensor square_21_cast = square(x = sub_42_cast)[name = tensor("square_21_cast")]; + tensor reduce_mean_65_axes_0 = const()[name = tensor("reduce_mean_65_axes_0"), val = tensor([2, 3, 4])]; + tensor reduce_mean_65_keep_dims_0 = const()[name = tensor("reduce_mean_65_keep_dims_0"), val = tensor(true)]; + tensor reduce_mean_65_cast = reduce_mean(axes = reduce_mean_65_axes_0, keep_dims = reduce_mean_65_keep_dims_0, x = square_21_cast)[name = tensor("reduce_mean_65_cast")]; + tensor add_42_y_0_to_fp16 = const()[name = tensor("add_42_y_0_to_fp16"), val = tensor(0x1.1p-20)]; + tensor add_42_cast = add(x = reduce_mean_65_cast, y = add_42_y_0_to_fp16)[name = tensor("add_42_cast")]; + tensor sqrt_21_cast = sqrt(x = add_42_cast)[name = tensor("sqrt_21_cast")]; + tensor real_div_21_cast = real_div(x = sub_42_cast, y = sqrt_21_cast)[name = tensor("real_div_21_cast")]; + tensor reshape_85_shape_0 = const()[name = tensor("reshape_85_shape_0"), val = tensor([1, 512, 128, 128])]; + tensor reshape_85_cast = reshape(shape = reshape_85_shape_0, x = real_div_21_cast)[name = tensor("reshape_85_cast")]; + tensor add_43_gamma_0_to_fp16 = const()[name = tensor("add_43_gamma_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(68261952)))]; + tensor add_43_beta_0_to_fp16 = const()[name = tensor("add_43_beta_0_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(68263040)))]; + tensor add_43_epsilon_0_to_fp16 = const()[name = tensor("add_43_epsilon_0_to_fp16"), val = tensor(0x1.5p-17)]; + tensor add_43_cast = batch_norm(beta = add_43_beta_0_to_fp16, epsilon = add_43_epsilon_0_to_fp16, gamma = add_43_gamma_0_to_fp16, mean = add_19_mean_0_to_fp16, variance = add_19_variance_0_to_fp16, x = reshape_85_cast)[name = tensor("add_43_cast")]; + tensor input_153_cast = silu(x = add_43_cast)[name = tensor("input_153_cast")]; + tensor var_483 = const()[name = tensor("op_483"), val = tensor([1, 1])]; + tensor var_485 = const()[name = tensor("op_485"), val = tensor([1, 1])]; + tensor input_pad_type_0 = const()[name = tensor("input_pad_type_0"), val = tensor("custom")]; + tensor input_pad_0 = const()[name = tensor("input_pad_0"), val = tensor([1, 1, 1, 1])]; + tensor encoder_conv_out_weight_to_fp16 = const()[name = tensor("encoder_conv_out_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(68264128)))]; + tensor encoder_conv_out_bias_to_fp16 = const()[name = tensor("encoder_conv_out_bias_to_fp16"), val = tensor([0x1.c88p-7, -0x1.04cp-4, 0x1.944p-3, 0x1.d9cp-3, 0x1.e78p-3, 0x1.78cp-5, 0x1.bb8p-5, -0x1.824p-3])]; + tensor input_cast = conv(bias = encoder_conv_out_bias_to_fp16, dilations = var_485, groups = var_15, pad = input_pad_0, pad_type = input_pad_type_0, strides = var_483, weight = encoder_conv_out_weight_to_fp16, x = input_153_cast)[name = tensor("input_cast")]; + tensor var_491 = const()[name = tensor("op_491"), val = tensor(1)]; + tensor var_494 = const()[name = tensor("op_494"), val = tensor([1, 1])]; + tensor var_496 = const()[name = tensor("op_496"), val = tensor([1, 1])]; + tensor var_498_pad_type_0 = const()[name = tensor("op_498_pad_type_0"), val = tensor("custom")]; + tensor var_498_pad_0 = const()[name = tensor("op_498_pad_0"), val = tensor([0, 0, 0, 0])]; + tensor quant_conv_weight_to_fp16 = const()[name = tensor("quant_conv_weight_to_fp16"), val = tensor(BLOBFILE(path = tensor("@model_path/weights/weight.bin"), offset = tensor(68337920)))]; + tensor quant_conv_bias_to_fp16 = const()[name = tensor("quant_conv_bias_to_fp16"), val = tensor([0x1.f48p-4, 0x1.088p-4, -0x1.e48p-3, -0x1.bf8p-2, -0x1.56cp+4, -0x1.598p+4, -0x1.62p+4, -0x1.664p+4])]; + tensor var_498_cast = conv(bias = quant_conv_bias_to_fp16, dilations = var_496, groups = var_491, pad = var_498_pad_0, pad_type = var_498_pad_type_0, strides = var_494, weight = quant_conv_weight_to_fp16, x = input_cast)[name = tensor("op_498_cast")]; + tensor var_498_cast_to_fp32_dtype_0 = const()[name = tensor("op_498_cast_to_fp32_dtype_0"), val = tensor("fp32")]; + tensor latent = cast(dtype = var_498_cast_to_fp32_dtype_0, x = var_498_cast)[name = tensor("cast_29")]; + } -> (latent); +} \ No newline at end of file