--- library_name: transformers license: mit base_model: SamLowe/roberta-base-go_emotions tags: - generated_from_trainer datasets: - sem_eval_2018_task_1 metrics: - f1 - accuracy - precision - recall model-index: - name: roberta-finetuned-sem_eval-english results: - task: name: Text Classification type: text-classification dataset: name: sem_eval_2018_task_1 type: sem_eval_2018_task_1 config: subtask5.english split: validation args: subtask5.english metrics: - name: F1 type: f1 value: 0.7207163601161665 - name: Accuracy type: accuracy value: 0.2799097065462754 - name: Precision type: precision value: 0.7554540842212075 - name: Recall type: recall value: 0.6890328551596483 --- # roberta-finetuned-sem_eval-english This model is a fine-tuned version of [SamLowe/roberta-base-go_emotions](https://huggingface.co/SamLowe/roberta-base-go_emotions) on the sem_eval_2018_task_1 dataset. It achieves the following results on the evaluation set: - Loss: 0.3097 - F1: 0.7207 - Roc Auc: 0.8127 - Accuracy: 0.2799 - Precision: 0.7555 - Recall: 0.6890 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 7 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:--------:|:---------:|:------:| | 0.3684 | 1.0 | 855 | 0.3003 | 0.7060 | 0.7973 | 0.3070 | 0.7749 | 0.6483 | | 0.2776 | 2.0 | 1710 | 0.2930 | 0.7082 | 0.7978 | 0.3025 | 0.7823 | 0.6469 | | 0.2441 | 3.0 | 2565 | 0.3019 | 0.7111 | 0.8025 | 0.2968 | 0.7684 | 0.6617 | | 0.2205 | 4.0 | 3420 | 0.3008 | 0.7140 | 0.8060 | 0.2698 | 0.7618 | 0.6719 | | 0.2002 | 5.0 | 4275 | 0.3058 | 0.7184 | 0.8109 | 0.2709 | 0.7555 | 0.6849 | | 0.1844 | 6.0 | 5130 | 0.3097 | 0.7207 | 0.8127 | 0.2799 | 0.7555 | 0.6890 | | 0.1692 | 7.0 | 5985 | 0.3110 | 0.7159 | 0.8102 | 0.2709 | 0.7482 | 0.6863 | ### Framework versions - Transformers 4.48.2 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0