{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7c7d6e2c5b40>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7c7d6e2c5bd0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7c7d6e2c5c60>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7c7d6e2c5cf0>", "_build": "<function ActorCriticPolicy._build at 0x7c7d6e2c5d80>", "forward": "<function ActorCriticPolicy.forward at 0x7c7d6e2c5e10>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7c7d6e2c5ea0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7c7d6e2c5f30>", "_predict": "<function ActorCriticPolicy._predict at 0x7c7d6e2c5fc0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7c7d6e2c6050>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7c7d6e2c60e0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7c7d6e2c6170>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7c7d6e25bac0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1706030944273478266, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM2Pjb2PYiy610c+OR51STYXjOW6s29juAAAgD8AAIA/M5+9O4Y9Aj+2Eqq8CnaAvucNeLvUs5I7AAAAAAAAAAAAAnK8SOeTuuqpjzlLaI00LolkOmN9prgAAIA/AACAP81O5jxcV066OmMzukk2JrU+IQC7ur5TOQAAgD8AAIA/2gO4vUgHjLqkpgs5bYIvNljLBTgUkCO4AAAAAAAAgD+A5Ra9rjGOusNg3jkAIMY0ZcEhulIlAbkAAIA/AACAPzP0hT3PYBu8y+LUO588Wz0zhjw93hoIvAAAgD8AAIA/QD+kvq4o+T7yqxw+9AmTvtXpgr1LeE89AAAAAAAAAACt/SU+5DwGPE7bADt34c441+abPR5bIboAAIA/AACAP8DdsT17mo26Q37ROU+4BzaXF006JcYQuQAAgD8AAIA/zdw6PFJI6bkJjo07IhD1tEO8KLs8Oqq6AACAPwAAgD8ArCw8XNs2um7mJrnNo7Ey52uKuzJxQjgAAIA/AACAP9qCuT32MGm60qvbO1KIGTdwHjg7QRgNNgAAgD8AAAAAM1vaPI+eULqzGyA5SjSJNAY6lzrG7ji4AACAPwAAgD9m7u+8rtWzunYWfbrrAli1y92nOYCPkDkAAIA/AACAP80Y/jyP8nS62El+Op+cvDWSFO26HuyRuQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGSIpvxYq5OMAWyUTegDjAF0lEdAnROjaTOgQHV9lChoBkdAafDekYXO4WgHTXYCaAhHQJ0YrUpd8iR1fZQoaAZHQGAp4pc5bQloB03oA2gIR0CdHQKNQ0oCdX2UKGgGR0BmvWhZha1UaAdN6ANoCEdAnSHLXYlIE3V9lChoBkdAZj0deY2KmGgHTegDaAhHQJ0jd1SwW311fZQoaAZHQF53OdoWYWtoB03oA2gIR0CdJrWVeKKpdX2UKGgGR0BhCFmJ3xFzaAdN6ANoCEdAnTCptelbeXV9lChoBkdAYG5giu+yq2gHTegDaAhHQJ02n420iQl1fZQoaAZHQGFfuoP07KdoB03oA2gIR0CdOrG1QZXNdX2UKGgGR0BhgFo+OfdzaAdN6ANoCEdAnT9iKrJbMXV9lChoBkdAZlweCCjDbmgHTegDaAhHQJ1GxI/Z/Td1fZQoaAZHQGXC+Eh7mdRoB03oA2gIR0CdTHoexOcldX2UKGgGR0Bj9nlQuVX4aAdN6ANoCEdAnU/EIX0oSnV9lChoBkdAYY6KoAGSp2gHTegDaAhHQJ1T5JHy3Ct1fZQoaAZHQGAHaVdHDrJoB03oA2gIR0CdVJpUPxx2dX2UKGgGR0BizwVfu1F6aAdN6ANoCEdAnVe6tozvZ3V9lChoBkdAY4euieumrWgHTegDaAhHQJ1YGGCZnct1fZQoaAZHQEHlkbxVhkRoB0v2aAhHQJ1tzdWQwK11fZQoaAZHQGHdK3uuzQhoB03oA2gIR0CdbgYcNpdsdX2UKGgGR0BkdbN4Z/CqaAdN6ANoCEdAnXKjKYAsCnV9lChoBkdAZPz18stkF2gHTegDaAhHQJ1486HTI/91fZQoaAZHQGQKgnDziCJoB03oA2gIR0Cde5bz9S/CdX2UKGgGR0Bf+6j8DSw4aAdN6ANoCEdAnYAWy1NQCXV9lChoBkdAYrn0RODaoWgHTegDaAhHQJ2LIbBGhEl1fZQoaAZHQGMvw6ySmqJoB03oA2gIR0CdkO6QvHtGdX2UKGgGR0BiI0D4gzP9aAdN6ANoCEdAnZTii/O+qXV9lChoBkdAZgmcd5prUWgHTegDaAhHQJ2ZUSFoL5R1fZQoaAZHQGIqjDTBqKxoB03oA2gIR0CdnzDVYp2EdX2UKGgGR0BlEBTdcjZ+aAdN6ANoCEdAnaZNSEUTMHV9lChoBkdAYcWFINEw4GgHTegDaAhHQJ2qoRywOe91fZQoaAZHQGEiQgTyrghoB03oA2gIR0Cdq78RtgrpdX2UKGgGR0BhiNS619fDaAdN6ANoCEdAnbAcJY1YQ3V9lChoBkdAY6Fs+FDfFmgHTegDaAhHQJ2wkWUKRdR1fZQoaAZHQF0cg1FYuChoB03oA2gIR0CdyBwHJLdvdX2UKGgGR0BhcxtaY/mlaAdN6ANoCEdAnchf1YhdMXV9lChoBkdAZVzeMyad+WgHTegDaAhHQJ3MxgXuVop1fZQoaAZHQGL4JS75Ec9oB03oA2gIR0Cd0XM9r434dX2UKGgGR0Bi3KAYpDu0aAdN6ANoCEdAndMWA08/2XV9lChoBkdAY1SWqtHQQmgHTegDaAhHQJ3WAvugHu91fZQoaAZHQGRSuDjBEa5oB03oA2gIR0Cd3+e+23KCdX2UKGgGR0BixyURnOB2aAdN6ANoCEdAnec91EE1VHV9lChoBkdAY354O+ZgHGgHTegDaAhHQJ3rvbAUL2J1fZQoaAZHQGMIulwcYIloB03oA2gIR0Cd78JFb3XadX2UKGgGR0Bkoc+5e7cxaAdN6ANoCEdAnfTh8MNMG3V9lChoBkdAYzaxIre67WgHTegDaAhHQJ37jA57w8Z1fZQoaAZHQGbKIW56MR9oB03oA2gIR0Cd/1wsGxD9dX2UKGgGR0Bm0uOp84PxaAdN6ANoCEdAngAPag261HV9lChoBkdAY9IZeiSJTGgHTegDaAhHQJ4DJyvLX+V1fZQoaAZHQF9gqwQlKK5oB03oA2gIR0CeA4ESuhbodX2UKGgGR0BlRbqyGBWgaAdN6ANoCEdAnhs2ki2UjnV9lChoBkdAX36uB+Wnj2gHTegDaAhHQJ4biR2bG3p1fZQoaAZHQGITqhDgIhRoB03oA2gIR0CeIFQWvbGndX2UKGgGR0BgB6HARChOaAdN6ANoCEdAniVRz/6wdXV9lChoBkdAZrPE3sHB12gHTegDaAhHQJ4nEDTz/ZN1fZQoaAZHQF985/9YOlRoB03oA2gIR0CeKjxCIDYAdX2UKGgGR0BkgqlUIcBEaAdN6ANoCEdAnjQbJGOMl3V9lChoBkdAafXUo8ZDRmgHTb8BaAhHQJ43RmTTvy91fZQoaAZHQGMjrBsQ/X5oB03oA2gIR0CeOX3AVO9GdX2UKGgGR0BkUlxIatLdaAdN6ANoCEdAnjzygK4QSXV9lChoBkdAZ1270WdmQWgHTegDaAhHQJ5A35HmRvF1fZQoaAZHQGF49Cu2ZzBoB03oA2gIR0CeRnuNPxhEdX2UKGgGR0BkNKGrS3LFaAdN6ANoCEdAnk9dhZyMk3V9lChoBkdAXEUb4rSVnmgHTegDaAhHQJ5T2606YE51fZQoaAZHQGJ7RGc4HX5oB03oA2gIR0CeVIxGlQ/HdX2UKGgGR0BjKCWqtHQQaAdN6ANoCEdAnleNKyv9tXV9lChoBkdAY2MUbDMvAWgHTegDaAhHQJ5X4v/R3Nd1fZQoaAZHQF6ysHSnccloB03oA2gIR0CeXBcm0E5idX2UKGgGR0Bj4c3fhuO0aAdN6ANoCEdAnnLAam4y5HV9lChoBkfAMVBqKxcE/2gHS9toCEdAnnMXLzPKMnV9lChoBkdAX+b6JqIrOWgHTegDaAhHQJ53gz2vjfh1fZQoaAZHQGA+ivHLiddoB03oA2gIR0CeeQ4qgAZLdX2UKGgGR0BdFF+y7f52aAdN6ANoCEdAnn0DFVDKHXV9lChoBkdAQIpDG96C2GgHS/hoCEdAnoPw9A5aNnV9lChoBkdAYad6TGHYYmgHTegDaAhHQJ6IntNSIgx1fZQoaAZHQGH3fdRBNVRoB03oA2gIR0Cei7ijcmBwdX2UKGgGR0BjXYuXeFcqaAdN6ANoCEdAno3YaUA1enV9lChoBkdAZqhKmsNlRWgHTegDaAhHQJ6ROjDbah91fZQoaAZHQGbXK8Djin5oB03oA2gIR0CelUq8DjiodX2UKGgGR0BkLXs9jgAIaAdN6ANoCEdAnppdPLxI8XV9lChoBkdAYZdt5UtI1GgHTegDaAhHQJ6gwaGYa5x1fZQoaAZHQGRUUUwi7kJoB03oA2gIR0CepQo0Q9RrdX2UKGgGR0BlJ234Kx9oaAdN6ANoCEdAnqkhSLqD9XV9lChoBkdAZWP5s0pEyGgHTegDaAhHQJ6phB+nZTR1fZQoaAZHQGfZWwu/UONoB03oA2gIR0Cerg2x6fJ4dX2UKGgGR0BlRmcvugHvaAdN6ANoCEdAnsctvCMxXXV9lChoBkdAY1h8stkFwGgHTegDaAhHQJ7MHy3CsOp1fZQoaAZHQGdXjhUBGQVoB03oA2gIR0CezdjmCAc1dX2UKGgGR0BKNv7WNFSbaAdL+WgIR0Ce0M9EkSmJdX2UKGgGR0BhcpuMuOCHaAdN6ANoCEdAntD8eOn2qXV9lChoBkdAZRNHhCMP0GgHTegDaAhHQJ7WV1Ng0CR1fZQoaAZHQGKnu2JBPbhoB03oA2gIR0Ce2jVJ+UhWdX2UKGgGR0BgYr0nPVuraAdN6ANoCEdAnt0GlQ/HHXV9lChoBkdAZ2sxKxs2vWgHTegDaAhHQJ7fQX+ERJ51fZQoaAZHQGC/R28qWkdoB03oA2gIR0Ce44qBEroXdX2UKGgGR0Bg9Kn3ta6jaAdN6ANoCEdAnuj/9YOlPHV9lChoBkdAcJuyMUAT7GgHTRIDaAhHQJ7sWyB06o51fZQoaAZHQGL36VD8cdZoB03oA2gIR0Ce75G+bmU4dX2UKGgGR0BkBNjoZAIIaAdN6ANoCEdAnvZGMGX5WXV9lChoBkdAZSuT8pCrtGgHTegDaAhHQJ7+zwQUYbd1fZQoaAZHQGPUyl3yI55oB03oA2gIR0Ce/0KPn0TUdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 252, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu121", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}