Update README.md
Browse files
    	
        README.md
    CHANGED
    
    | 
         @@ -32,6 +32,9 @@ widget: 
     | 
|
| 32 | 
         
             
              example_title: Bullish Stock Tweet 2
         
     | 
| 33 | 
         
             
            - text: Italian companies braced for more political uncertainty
         
     | 
| 34 | 
         
             
              example_title: Bearish News
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 35 | 
         
             
            ---
         
     | 
| 36 | 
         | 
| 37 | 
         
             
            # FinTwitBERT-sentiment
         
     | 
| 
         @@ -53,34 +56,19 @@ For a comprehensive overview, including the training setup and analysis of the m 
     | 
|
| 53 | 
         
             
            Using [HuggingFace's transformers library](https://huggingface.co/docs/transformers/index) the model and tokenizers can be converted into a pipeline for text classification.
         
     | 
| 54 | 
         | 
| 55 | 
         
             
            ```python
         
     | 
| 56 | 
         
            -
            from transformers import  
     | 
| 57 | 
         | 
| 58 | 
         
            -
             
     | 
| 59 | 
         
            -
             
     | 
| 60 | 
         
            -
                 
     | 
| 61 | 
         
            -
                 
     | 
| 62 | 
         
            -
                 
     | 
| 63 | 
         
             
            )
         
     | 
| 64 | 
         
            -
            model.config.problem_type = "single_label_classification"
         
     | 
| 65 | 
         
            -
            tokenizer = AutoTokenizer.from_pretrained(
         
     | 
| 66 | 
         
            -
                "StephanAkkerman/FinTwitBERT-sentiment"
         
     | 
| 67 | 
         
            -
            )
         
     | 
| 68 | 
         
            -
            model.eval()
         
     | 
| 69 | 
         
            -
            pipeline = pipeline(
         
     | 
| 70 | 
         
            -
                "text-classification", model=model, tokenizer=tokenizer
         
     | 
| 71 | 
         
            -
            )
         
     | 
| 72 | 
         
            -
             
     | 
| 73 | 
         
            -
            # Sentences we want the sentiment for
         
     | 
| 74 | 
         
            -
            sentence = ["Nice 9% pre market move for $para, pump my calls Uncle Buffett 🤑"]
         
     | 
| 75 | 
         | 
| 76 | 
         
             
            # Get the predicted sentiment
         
     | 
| 77 | 
         
            -
            print( 
     | 
| 78 | 
         
             
            ```
         
     | 
| 79 | 
         | 
| 80 | 
         
            -
            ## Training
         
     | 
| 81 | 
         
            -
             
     | 
| 82 | 
         
            -
            The model was trained with the following parameters:
         
     | 
| 83 | 
         
            -
             
     | 
| 84 | 
         
             
            ## Citing & Authors
         
     | 
| 85 | 
         | 
| 86 | 
         
             
            If you use FinTwitBERT or FinTwitBERT-sentiment in your research, please cite us as follows, noting that both authors contributed equally to this work:
         
     | 
| 
         | 
|
| 32 | 
         
             
              example_title: Bullish Stock Tweet 2
         
     | 
| 33 | 
         
             
            - text: Italian companies braced for more political uncertainty
         
     | 
| 34 | 
         
             
              example_title: Bearish News
         
     | 
| 35 | 
         
            +
            #model-index:
         
     | 
| 36 | 
         
            +
            #- name: FinTwitBERT-sentiment
         
     | 
| 37 | 
         
            +
            #  results:
         
     | 
| 38 | 
         
             
            ---
         
     | 
| 39 | 
         | 
| 40 | 
         
             
            # FinTwitBERT-sentiment
         
     | 
| 
         | 
|
| 56 | 
         
             
            Using [HuggingFace's transformers library](https://huggingface.co/docs/transformers/index) the model and tokenizers can be converted into a pipeline for text classification.
         
     | 
| 57 | 
         | 
| 58 | 
         
             
            ```python
         
     | 
| 59 | 
         
            +
            from transformers import pipeline
         
     | 
| 60 | 
         | 
| 61 | 
         
            +
            # Create a sentiment analysis pipeline
         
     | 
| 62 | 
         
            +
            pipe = pipeline(
         
     | 
| 63 | 
         
            +
                "sentiment-analysis",
         
     | 
| 64 | 
         
            +
                model="StephanAkkerman/FinTwitBERT-sentiment",
         
     | 
| 65 | 
         
            +
                tokenizer="StephanAkkerman/FinTwitBERT-sentiment",
         
     | 
| 66 | 
         
             
            )
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 67 | 
         | 
| 68 | 
         
             
            # Get the predicted sentiment
         
     | 
| 69 | 
         
            +
            print(pipe("Nice 9% pre market move for $para, pump my calls Uncle Buffett 🤑"))
         
     | 
| 70 | 
         
             
            ```
         
     | 
| 71 | 
         | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 72 | 
         
             
            ## Citing & Authors
         
     | 
| 73 | 
         | 
| 74 | 
         
             
            If you use FinTwitBERT or FinTwitBERT-sentiment in your research, please cite us as follows, noting that both authors contributed equally to this work:
         
     |