Upload tokenization_chexagent.py
Browse files- tokenization_chexagent.py +646 -0
 
    	
        tokenization_chexagent.py
    ADDED
    
    | 
         @@ -0,0 +1,646 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            import json
         
     | 
| 2 | 
         
            +
            from functools import lru_cache
         
     | 
| 3 | 
         
            +
            from typing import TYPE_CHECKING
         
     | 
| 4 | 
         
            +
             
     | 
| 5 | 
         
            +
            import regex as re
         
     | 
| 6 | 
         
            +
            from transformers.tokenization_utils_base import TextInput
         
     | 
| 7 | 
         
            +
            from transformers.utils import is_tf_available, is_torch_available, to_py_obj
         
     | 
| 8 | 
         
            +
             
     | 
| 9 | 
         
            +
            if TYPE_CHECKING:
         
     | 
| 10 | 
         
            +
                if is_torch_available():
         
     | 
| 11 | 
         
            +
                    import torch
         
     | 
| 12 | 
         
            +
                if is_tf_available():
         
     | 
| 13 | 
         
            +
                    import tensorflow as tf
         
     | 
| 14 | 
         
            +
             
     | 
| 15 | 
         
            +
            import os
         
     | 
| 16 | 
         
            +
            import random
         
     | 
| 17 | 
         
            +
            from typing import Dict, List, Tuple, Union, Any, Callable, Optional
         
     | 
| 18 | 
         
            +
             
     | 
| 19 | 
         
            +
            import matplotlib as mpl
         
     | 
| 20 | 
         
            +
            import matplotlib.colors as mcolors
         
     | 
| 21 | 
         
            +
            import matplotlib.colors as mplc
         
     | 
| 22 | 
         
            +
            import matplotlib.figure as mplfigure
         
     | 
| 23 | 
         
            +
            import numpy as np
         
     | 
| 24 | 
         
            +
            import requests
         
     | 
| 25 | 
         
            +
            import torch
         
     | 
| 26 | 
         
            +
            from PIL import Image
         
     | 
| 27 | 
         
            +
            from matplotlib.backends.backend_agg import FigureCanvasAgg
         
     | 
| 28 | 
         
            +
            from transformers import PreTrainedTokenizer, AddedToken
         
     | 
| 29 | 
         
            +
            from transformers.utils import logging
         
     | 
| 30 | 
         
            +
             
     | 
| 31 | 
         
            +
            logger = logging.get_logger(__name__)
         
     | 
| 32 | 
         
            +
             
     | 
| 33 | 
         
            +
            VOCAB_FILES_NAMES = {
         
     | 
| 34 | 
         
            +
                "vocab_file": "vocab.json",
         
     | 
| 35 | 
         
            +
                "merges_file": "merges.txt",
         
     | 
| 36 | 
         
            +
            }
         
     | 
| 37 | 
         
            +
             
     | 
| 38 | 
         
            +
            PRETRAINED_VOCAB_FILES_MAP = {
         
     | 
| 39 | 
         
            +
                "vocab_file": {
         
     | 
| 40 | 
         
            +
                    "Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/vocab.json",
         
     | 
| 41 | 
         
            +
                },
         
     | 
| 42 | 
         
            +
                "merges_file": {
         
     | 
| 43 | 
         
            +
                    "Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/merges.txt",
         
     | 
| 44 | 
         
            +
                },
         
     | 
| 45 | 
         
            +
            }
         
     | 
| 46 | 
         
            +
             
     | 
| 47 | 
         
            +
            PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
         
     | 
| 48 | 
         
            +
                "Salesforce/codegen-350M-mono": 2048,
         
     | 
| 49 | 
         
            +
            }
         
     | 
| 50 | 
         
            +
             
     | 
| 51 | 
         
            +
            IMG_TOKEN_SPAN = 1024
         
     | 
| 52 | 
         
            +
             
     | 
| 53 | 
         
            +
            DEFAULT_CHAT_TEMPLATE = "{% for message in messages %}\n{% if message['from'] == 'human' %}\n{{ '<|user|>\n' + message['value'] + eos_token }}\n{% elif message['from'] == 'system' %}\n{{ '<|system|>\n' + message['value'] + eos_token }}\n{% elif message['from'] == 'gpt' %}\n{{ '<|assistant|>\n'  + message['value'] + eos_token }}\n{% endif %}\n{% if loop.last and add_generation_prompt %}\n{{ '<|assistant|>' }}\n{% endif %}\n{% endfor %}"
         
     | 
| 54 | 
         
            +
             
     | 
| 55 | 
         
            +
             
     | 
| 56 | 
         
            +
            @lru_cache()
         
     | 
| 57 | 
         
            +
            def bytes_to_unicode():
         
     | 
| 58 | 
         
            +
                """
         
     | 
| 59 | 
         
            +
                Returns list of utf-8 byte and a mapping to unicode strings. We specifically avoids mapping to whitespace/control
         
     | 
| 60 | 
         
            +
                characters the bpe code barfs on.
         
     | 
| 61 | 
         
            +
             
     | 
| 62 | 
         
            +
                The reversible bpe codes work on unicode strings. This means you need a large # of unicode characters in your vocab
         
     | 
| 63 | 
         
            +
                if you want to avoid UNKs. When you're at something like a 10B token dataset you end up needing around 5K for
         
     | 
| 64 | 
         
            +
                decent coverage. This is a significant percentage of your normal, say, 32K bpe vocab. To avoid that, we want lookup
         
     | 
| 65 | 
         
            +
                tables between utf-8 bytes and unicode strings.
         
     | 
| 66 | 
         
            +
                """
         
     | 
| 67 | 
         
            +
                bs = (
         
     | 
| 68 | 
         
            +
                        list(range(ord("!"), ord("~") + 1)) + list(range(ord("¡"), ord("¬") + 1)) + list(
         
     | 
| 69 | 
         
            +
                    range(ord("®"), ord("ÿ") + 1))
         
     | 
| 70 | 
         
            +
                )
         
     | 
| 71 | 
         
            +
                cs = bs[:]
         
     | 
| 72 | 
         
            +
                n = 0
         
     | 
| 73 | 
         
            +
                for b in range(2 ** 8):
         
     | 
| 74 | 
         
            +
                    if b not in bs:
         
     | 
| 75 | 
         
            +
                        bs.append(b)
         
     | 
| 76 | 
         
            +
                        cs.append(2 ** 8 + n)
         
     | 
| 77 | 
         
            +
                        n += 1
         
     | 
| 78 | 
         
            +
                cs = [chr(n) for n in cs]
         
     | 
| 79 | 
         
            +
                return dict(zip(bs, cs))
         
     | 
| 80 | 
         
            +
             
     | 
| 81 | 
         
            +
             
     | 
| 82 | 
         
            +
            def get_pairs(word):
         
     | 
| 83 | 
         
            +
                """
         
     | 
| 84 | 
         
            +
                Return set of symbol pairs in a word.
         
     | 
| 85 | 
         
            +
             
     | 
| 86 | 
         
            +
                Word is represented as tuple of symbols (symbols being variable-length strings).
         
     | 
| 87 | 
         
            +
                """
         
     | 
| 88 | 
         
            +
                pairs = set()
         
     | 
| 89 | 
         
            +
                prev_char = word[0]
         
     | 
| 90 | 
         
            +
                for char in word[1:]:
         
     | 
| 91 | 
         
            +
                    pairs.add((prev_char, char))
         
     | 
| 92 | 
         
            +
                    prev_char = char
         
     | 
| 93 | 
         
            +
                return pairs
         
     | 
| 94 | 
         
            +
             
     | 
| 95 | 
         
            +
             
     | 
| 96 | 
         
            +
            def _list_find(
         
     | 
| 97 | 
         
            +
                    input_list: List[Any],
         
     | 
| 98 | 
         
            +
                    candidates: Tuple[Any],
         
     | 
| 99 | 
         
            +
                    start: int = 0,
         
     | 
| 100 | 
         
            +
            ):
         
     | 
| 101 | 
         
            +
                for i in range(start, len(input_list)):
         
     | 
| 102 | 
         
            +
                    if input_list[i] in candidates:
         
     | 
| 103 | 
         
            +
                        return i
         
     | 
| 104 | 
         
            +
                return -1
         
     | 
| 105 | 
         
            +
             
     | 
| 106 | 
         
            +
             
     | 
| 107 | 
         
            +
            def _replace_closed_tag(
         
     | 
| 108 | 
         
            +
                    input_tokens: List[Any],
         
     | 
| 109 | 
         
            +
                    start_tags: Union[Any, Tuple[Any]],
         
     | 
| 110 | 
         
            +
                    end_tags: Union[Any, Tuple[Any]],
         
     | 
| 111 | 
         
            +
                    inclusive_replace_func: Callable,
         
     | 
| 112 | 
         
            +
                    exclusive_replace_func: Callable = lambda x: x,
         
     | 
| 113 | 
         
            +
            ):
         
     | 
| 114 | 
         
            +
                if isinstance(start_tags, (str, int)):
         
     | 
| 115 | 
         
            +
                    start_tags = (start_tags,)
         
     | 
| 116 | 
         
            +
                if isinstance(end_tags, (str, int)):
         
     | 
| 117 | 
         
            +
                    end_tags = (end_tags,)
         
     | 
| 118 | 
         
            +
                assert len(start_tags) == len(end_tags)
         
     | 
| 119 | 
         
            +
             
     | 
| 120 | 
         
            +
                output_tokens = []
         
     | 
| 121 | 
         
            +
                end = 0
         
     | 
| 122 | 
         
            +
                while True:
         
     | 
| 123 | 
         
            +
                    start = _list_find(input_tokens, start_tags, end)
         
     | 
| 124 | 
         
            +
                    if start == -1:
         
     | 
| 125 | 
         
            +
                        break
         
     | 
| 126 | 
         
            +
                    output_tokens.extend(exclusive_replace_func(input_tokens[end: start]))
         
     | 
| 127 | 
         
            +
                    tag_idx = start_tags.index(input_tokens[start])
         
     | 
| 128 | 
         
            +
                    end = _list_find(input_tokens, (end_tags[tag_idx],), start)
         
     | 
| 129 | 
         
            +
                    if end == -1:
         
     | 
| 130 | 
         
            +
                        raise ValueError("Unclosed image token")
         
     | 
| 131 | 
         
            +
                    output_tokens.extend(inclusive_replace_func(input_tokens[start: end + 1]))
         
     | 
| 132 | 
         
            +
                    end += 1
         
     | 
| 133 | 
         
            +
                output_tokens.extend(exclusive_replace_func(input_tokens[end:]))
         
     | 
| 134 | 
         
            +
                return output_tokens
         
     | 
| 135 | 
         
            +
             
     | 
| 136 | 
         
            +
             
     | 
| 137 | 
         
            +
            class CheXagentTokenizer(PreTrainedTokenizer):
         
     | 
| 138 | 
         
            +
                vocab_files_names = VOCAB_FILES_NAMES
         
     | 
| 139 | 
         
            +
                pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
         
     | 
| 140 | 
         
            +
                max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
         
     | 
| 141 | 
         
            +
                model_input_names = ["input_ids", "attention_mask"]
         
     | 
| 142 | 
         
            +
             
     | 
| 143 | 
         
            +
                def __init__(
         
     | 
| 144 | 
         
            +
                        self,
         
     | 
| 145 | 
         
            +
                        vocab_file,
         
     | 
| 146 | 
         
            +
                        merges_file,
         
     | 
| 147 | 
         
            +
                        errors="replace",
         
     | 
| 148 | 
         
            +
                        unk_token="<|endoftext|>",
         
     | 
| 149 | 
         
            +
                        bos_token="<|endoftext|>",
         
     | 
| 150 | 
         
            +
                        eos_token="<|endoftext|>",
         
     | 
| 151 | 
         
            +
                        pad_token=None,
         
     | 
| 152 | 
         
            +
                        add_prefix_space=False,
         
     | 
| 153 | 
         
            +
                        add_bos_token=False,
         
     | 
| 154 | 
         
            +
                        image_start_tag='<|img|>',
         
     | 
| 155 | 
         
            +
                        image_end_tag='<|/img|>',
         
     | 
| 156 | 
         
            +
                        image_pad_tag='<|imgpad|>',
         
     | 
| 157 | 
         
            +
                        ref_start_tag='<|ref|>',
         
     | 
| 158 | 
         
            +
                        ref_end_tag='<|/ref|>',
         
     | 
| 159 | 
         
            +
                        box_start_tag='<|box|>',
         
     | 
| 160 | 
         
            +
                        box_end_tag='<|/box|>',
         
     | 
| 161 | 
         
            +
                        quad_start_tag='<|quad|>',
         
     | 
| 162 | 
         
            +
                        quad_end_tag='<|/quad|>',
         
     | 
| 163 | 
         
            +
                        **kwargs,
         
     | 
| 164 | 
         
            +
                ):
         
     | 
| 165 | 
         
            +
                    bos_token = AddedToken(bos_token, special=True) if isinstance(bos_token, str) else bos_token
         
     | 
| 166 | 
         
            +
                    eos_token = AddedToken(eos_token, special=True) if isinstance(eos_token, str) else eos_token
         
     | 
| 167 | 
         
            +
                    unk_token = AddedToken(unk_token, special=True) if isinstance(unk_token, str) else unk_token
         
     | 
| 168 | 
         
            +
                    pad_token = AddedToken(pad_token, special=True) if isinstance(pad_token, str) else pad_token
         
     | 
| 169 | 
         
            +
                    self.add_bos_token = add_bos_token
         
     | 
| 170 | 
         
            +
             
     | 
| 171 | 
         
            +
                    with open(vocab_file, encoding="utf-8") as vocab_handle:
         
     | 
| 172 | 
         
            +
                        self.encoder = json.load(vocab_handle)
         
     | 
| 173 | 
         
            +
                    self.decoder = {v: k for k, v in self.encoder.items()}
         
     | 
| 174 | 
         
            +
                    self.errors = errors  # how to handle errors in decoding
         
     | 
| 175 | 
         
            +
                    self.byte_encoder = bytes_to_unicode()
         
     | 
| 176 | 
         
            +
                    self.byte_decoder = {v: k for k, v in self.byte_encoder.items()}
         
     | 
| 177 | 
         
            +
                    with open(merges_file, encoding="utf-8") as merges_handle:
         
     | 
| 178 | 
         
            +
                        bpe_merges = merges_handle.read().split("\n")[1:-1]
         
     | 
| 179 | 
         
            +
                    bpe_merges = [tuple(merge.split()) for merge in bpe_merges]
         
     | 
| 180 | 
         
            +
                    self.bpe_ranks = dict(zip(bpe_merges, range(len(bpe_merges))))
         
     | 
| 181 | 
         
            +
                    self.cache = {}
         
     | 
| 182 | 
         
            +
                    self.add_prefix_space = add_prefix_space
         
     | 
| 183 | 
         
            +
             
     | 
| 184 | 
         
            +
                    # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
         
     | 
| 185 | 
         
            +
                    self.pat = re.compile(r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""")
         
     | 
| 186 | 
         
            +
                    super().__init__(
         
     | 
| 187 | 
         
            +
                        errors=errors,
         
     | 
| 188 | 
         
            +
                        unk_token=unk_token,
         
     | 
| 189 | 
         
            +
                        bos_token=bos_token,
         
     | 
| 190 | 
         
            +
                        eos_token=eos_token,
         
     | 
| 191 | 
         
            +
                        pad_token=pad_token,
         
     | 
| 192 | 
         
            +
                        add_prefix_space=add_prefix_space,
         
     | 
| 193 | 
         
            +
                        add_bos_token=add_bos_token,
         
     | 
| 194 | 
         
            +
                        **kwargs,
         
     | 
| 195 | 
         
            +
                    )
         
     | 
| 196 | 
         
            +
             
     | 
| 197 | 
         
            +
                    self.image_start_tag = image_start_tag
         
     | 
| 198 | 
         
            +
                    self.image_end_tag = image_end_tag
         
     | 
| 199 | 
         
            +
                    self.image_pad_tag = image_pad_tag
         
     | 
| 200 | 
         
            +
                    self.ref_start_tag = ref_start_tag
         
     | 
| 201 | 
         
            +
                    self.ref_end_tag = ref_end_tag
         
     | 
| 202 | 
         
            +
                    self.box_start_tag = box_start_tag
         
     | 
| 203 | 
         
            +
                    self.box_end_tag = box_end_tag
         
     | 
| 204 | 
         
            +
                    self.quad_start_tag = quad_start_tag
         
     | 
| 205 | 
         
            +
                    self.quad_end_tag = quad_end_tag
         
     | 
| 206 | 
         
            +
                    self.IMAGE_ST = (
         
     | 
| 207 | 
         
            +
                        image_start_tag, image_end_tag, image_pad_tag,
         
     | 
| 208 | 
         
            +
                        ref_start_tag, ref_end_tag, box_start_tag, box_end_tag,
         
     | 
| 209 | 
         
            +
                        quad_start_tag, quad_end_tag,
         
     | 
| 210 | 
         
            +
                    )
         
     | 
| 211 | 
         
            +
                    for special_token in self.IMAGE_ST:
         
     | 
| 212 | 
         
            +
                        if special_token not in self.get_vocab():
         
     | 
| 213 | 
         
            +
                            self.add_special_tokens({"additional_special_tokens": [special_token]})
         
     | 
| 214 | 
         
            +
                    for coordinate in range(10):
         
     | 
| 215 | 
         
            +
                        if f"<{coordinate}>" not in self.get_vocab():
         
     | 
| 216 | 
         
            +
                            self.add_special_tokens({"additional_special_tokens": [f"<|coord_{coordinate}|>"]})
         
     | 
| 217 | 
         
            +
                    if len(self) % 64 != 0:
         
     | 
| 218 | 
         
            +
                        for extra in range(((len(self) // 64) + 1) * 64 - len(self)):
         
     | 
| 219 | 
         
            +
                            if f"<extra_{extra}>" not in self.get_vocab():
         
     | 
| 220 | 
         
            +
                                self.add_special_tokens({"additional_special_tokens": [f"<|extra_{extra}|>"]})
         
     | 
| 221 | 
         
            +
                    self.img_start_id = self.convert_tokens_to_ids(self.image_start_tag)
         
     | 
| 222 | 
         
            +
                    self.img_end_id = self.convert_tokens_to_ids(self.image_end_tag)
         
     | 
| 223 | 
         
            +
                    self.img_pad_id = self.convert_tokens_to_ids(self.image_pad_tag)
         
     | 
| 224 | 
         
            +
                    self.ref_start_id = self.convert_tokens_to_ids(self.ref_start_tag)
         
     | 
| 225 | 
         
            +
                    self.ref_end_id = self.convert_tokens_to_ids(self.ref_end_tag)
         
     | 
| 226 | 
         
            +
                    self.box_start_id = self.convert_tokens_to_ids(self.box_start_tag)
         
     | 
| 227 | 
         
            +
                    self.box_end_id = self.convert_tokens_to_ids(self.box_end_tag)
         
     | 
| 228 | 
         
            +
                    self.quad_start_id = self.convert_tokens_to_ids(self.quad_start_tag)
         
     | 
| 229 | 
         
            +
                    self.quad_end_id = self.convert_tokens_to_ids(self.quad_end_tag)
         
     | 
| 230 | 
         
            +
                    self.chat_template = DEFAULT_CHAT_TEMPLATE
         
     | 
| 231 | 
         
            +
             
     | 
| 232 | 
         
            +
                @property
         
     | 
| 233 | 
         
            +
                def vocab_size(self):
         
     | 
| 234 | 
         
            +
                    return len(self.encoder)
         
     | 
| 235 | 
         
            +
             
     | 
| 236 | 
         
            +
                def get_vocab(self):
         
     | 
| 237 | 
         
            +
                    return dict(self.encoder, **self.added_tokens_encoder)
         
     | 
| 238 | 
         
            +
             
     | 
| 239 | 
         
            +
                def bpe(self, token):
         
     | 
| 240 | 
         
            +
                    if token in self.cache:
         
     | 
| 241 | 
         
            +
                        return self.cache[token]
         
     | 
| 242 | 
         
            +
                    word = tuple(token)
         
     | 
| 243 | 
         
            +
                    pairs = get_pairs(word)
         
     | 
| 244 | 
         
            +
             
     | 
| 245 | 
         
            +
                    if not pairs:
         
     | 
| 246 | 
         
            +
                        return token
         
     | 
| 247 | 
         
            +
             
     | 
| 248 | 
         
            +
                    while True:
         
     | 
| 249 | 
         
            +
                        bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf")))
         
     | 
| 250 | 
         
            +
                        if bigram not in self.bpe_ranks:
         
     | 
| 251 | 
         
            +
                            break
         
     | 
| 252 | 
         
            +
                        first, second = bigram
         
     | 
| 253 | 
         
            +
                        new_word = []
         
     | 
| 254 | 
         
            +
                        i = 0
         
     | 
| 255 | 
         
            +
                        while i < len(word):
         
     | 
| 256 | 
         
            +
                            try:
         
     | 
| 257 | 
         
            +
                                j = word.index(first, i)
         
     | 
| 258 | 
         
            +
                            except ValueError:
         
     | 
| 259 | 
         
            +
                                new_word.extend(word[i:])
         
     | 
| 260 | 
         
            +
                                break
         
     | 
| 261 | 
         
            +
                            else:
         
     | 
| 262 | 
         
            +
                                new_word.extend(word[i:j])
         
     | 
| 263 | 
         
            +
                                i = j
         
     | 
| 264 | 
         
            +
             
     | 
| 265 | 
         
            +
                            if word[i] == first and i < len(word) - 1 and word[i + 1] == second:
         
     | 
| 266 | 
         
            +
                                new_word.append(first + second)
         
     | 
| 267 | 
         
            +
                                i += 2
         
     | 
| 268 | 
         
            +
                            else:
         
     | 
| 269 | 
         
            +
                                new_word.append(word[i])
         
     | 
| 270 | 
         
            +
                                i += 1
         
     | 
| 271 | 
         
            +
                        new_word = tuple(new_word)
         
     | 
| 272 | 
         
            +
                        word = new_word
         
     | 
| 273 | 
         
            +
                        if len(word) == 1:
         
     | 
| 274 | 
         
            +
                            break
         
     | 
| 275 | 
         
            +
                        else:
         
     | 
| 276 | 
         
            +
                            pairs = get_pairs(word)
         
     | 
| 277 | 
         
            +
                    word = " ".join(word)
         
     | 
| 278 | 
         
            +
                    self.cache[token] = word
         
     | 
| 279 | 
         
            +
                    return word
         
     | 
| 280 | 
         
            +
             
     | 
| 281 | 
         
            +
                def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
         
     | 
| 282 | 
         
            +
                    if self.add_bos_token:
         
     | 
| 283 | 
         
            +
                        bos_token_ids = [self.bos_token_id]
         
     | 
| 284 | 
         
            +
                    else:
         
     | 
| 285 | 
         
            +
                        bos_token_ids = []
         
     | 
| 286 | 
         
            +
             
     | 
| 287 | 
         
            +
                    output = bos_token_ids + token_ids_0
         
     | 
| 288 | 
         
            +
             
     | 
| 289 | 
         
            +
                    if token_ids_1 is None:
         
     | 
| 290 | 
         
            +
                        return output
         
     | 
| 291 | 
         
            +
             
     | 
| 292 | 
         
            +
                    return output + bos_token_ids + token_ids_1
         
     | 
| 293 | 
         
            +
             
     | 
| 294 | 
         
            +
                def tokenize(self, text: TextInput, **kwargs) -> List[str]:
         
     | 
| 295 | 
         
            +
                    def _encode_imgurl(img_tokens):
         
     | 
| 296 | 
         
            +
                        assert img_tokens[0] == self.image_start_tag and img_tokens[-1] == self.image_end_tag
         
     | 
| 297 | 
         
            +
                        img_tokens = img_tokens[1:-1]
         
     | 
| 298 | 
         
            +
                        img_url = ''.join(img_tokens)
         
     | 
| 299 | 
         
            +
                        out_img_tokens = list(img_url)
         
     | 
| 300 | 
         
            +
                        if len(out_img_tokens) > IMG_TOKEN_SPAN:
         
     | 
| 301 | 
         
            +
                            raise ValueError("The content in {}..{} is too long".format(self.image_start_tag, self.image_end_tag))
         
     | 
| 302 | 
         
            +
                        out_img_tokens.extend([self.image_pad_tag] * (IMG_TOKEN_SPAN - len(out_img_tokens)))
         
     | 
| 303 | 
         
            +
                        out_img_tokens = [self.image_start_tag] + out_img_tokens + [self.image_end_tag]
         
     | 
| 304 | 
         
            +
                        return out_img_tokens
         
     | 
| 305 | 
         
            +
             
     | 
| 306 | 
         
            +
                    tokens = super().tokenize(text, **kwargs)
         
     | 
| 307 | 
         
            +
                    tokens = _replace_closed_tag(tokens, self.image_start_tag, self.image_end_tag, _encode_imgurl)
         
     | 
| 308 | 
         
            +
                    return tokens
         
     | 
| 309 | 
         
            +
             
     | 
| 310 | 
         
            +
                def _tokenize(self, text):
         
     | 
| 311 | 
         
            +
                    """Tokenize a string."""
         
     | 
| 312 | 
         
            +
             
     | 
| 313 | 
         
            +
                    bpe_tokens = []
         
     | 
| 314 | 
         
            +
                    for token in re.findall(self.pat, text):
         
     | 
| 315 | 
         
            +
                        token = "".join(
         
     | 
| 316 | 
         
            +
                            self.byte_encoder[b] for b in token.encode("utf-8")
         
     | 
| 317 | 
         
            +
                        )  # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case)
         
     | 
| 318 | 
         
            +
                        bpe_tokens.extend(bpe_token for bpe_token in self.bpe(token).split(" "))
         
     | 
| 319 | 
         
            +
                    return bpe_tokens
         
     | 
| 320 | 
         
            +
             
     | 
| 321 | 
         
            +
                def _convert_token_to_id(self, token):
         
     | 
| 322 | 
         
            +
                    """Converts a token (str) in an id using the vocab."""
         
     | 
| 323 | 
         
            +
                    return self.encoder.get(token, self.encoder.get(self.unk_token))
         
     | 
| 324 | 
         
            +
             
     | 
| 325 | 
         
            +
                def _convert_id_to_token(self, index):
         
     | 
| 326 | 
         
            +
                    """Converts an index (integer) in a token (str) using the vocab."""
         
     | 
| 327 | 
         
            +
                    return self.decoder.get(index)
         
     | 
| 328 | 
         
            +
             
     | 
| 329 | 
         
            +
                def convert_tokens_to_string(self, tokens):
         
     | 
| 330 | 
         
            +
                    """Converts a sequence of tokens (string) in a single string."""
         
     | 
| 331 | 
         
            +
                    text = "".join(tokens)
         
     | 
| 332 | 
         
            +
                    text = bytearray([self.byte_decoder[c] for c in text]).decode("utf-8", errors=self.errors)
         
     | 
| 333 | 
         
            +
                    return text
         
     | 
| 334 | 
         
            +
             
     | 
| 335 | 
         
            +
                def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
         
     | 
| 336 | 
         
            +
                    if not os.path.isdir(save_directory):
         
     | 
| 337 | 
         
            +
                        logger.error(f"Vocabulary path ({save_directory}) should be a directory")
         
     | 
| 338 | 
         
            +
                        return
         
     | 
| 339 | 
         
            +
                    vocab_file = os.path.join(
         
     | 
| 340 | 
         
            +
                        save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
         
     | 
| 341 | 
         
            +
                    )
         
     | 
| 342 | 
         
            +
                    merge_file = os.path.join(
         
     | 
| 343 | 
         
            +
                        save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"]
         
     | 
| 344 | 
         
            +
                    )
         
     | 
| 345 | 
         
            +
             
     | 
| 346 | 
         
            +
                    with open(vocab_file, "w", encoding="utf-8") as f:
         
     | 
| 347 | 
         
            +
                        f.write(json.dumps(self.encoder, indent=2, sort_keys=True, ensure_ascii=False) + "\n")
         
     | 
| 348 | 
         
            +
             
     | 
| 349 | 
         
            +
                    index = 0
         
     | 
| 350 | 
         
            +
                    with open(merge_file, "w", encoding="utf-8") as writer:
         
     | 
| 351 | 
         
            +
                        writer.write("#version: 0.2\n")
         
     | 
| 352 | 
         
            +
                        for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda kv: kv[1]):
         
     | 
| 353 | 
         
            +
                            if index != token_index:
         
     | 
| 354 | 
         
            +
                                logger.warning(
         
     | 
| 355 | 
         
            +
                                    f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive."
         
     | 
| 356 | 
         
            +
                                    " Please check that the tokenizer is not corrupted!"
         
     | 
| 357 | 
         
            +
                                )
         
     | 
| 358 | 
         
            +
                                index = token_index
         
     | 
| 359 | 
         
            +
                            writer.write(" ".join(bpe_tokens) + "\n")
         
     | 
| 360 | 
         
            +
                            index += 1
         
     | 
| 361 | 
         
            +
             
     | 
| 362 | 
         
            +
                    return vocab_file, merge_file
         
     | 
| 363 | 
         
            +
             
     | 
| 364 | 
         
            +
                def prepare_for_tokenization(self, text, is_split_into_words=False, **kwargs):
         
     | 
| 365 | 
         
            +
                    add_prefix_space = kwargs.pop("add_prefix_space", self.add_prefix_space)
         
     | 
| 366 | 
         
            +
                    if is_split_into_words or add_prefix_space:
         
     | 
| 367 | 
         
            +
                        text = " " + text
         
     | 
| 368 | 
         
            +
                    return (text, kwargs)
         
     | 
| 369 | 
         
            +
             
     | 
| 370 | 
         
            +
                def decode(
         
     | 
| 371 | 
         
            +
                        self,
         
     | 
| 372 | 
         
            +
                        token_ids: Union[int, List[int], "np.ndarray", "torch.Tensor", "tf.Tensor"],
         
     | 
| 373 | 
         
            +
                        skip_special_tokens: bool = False,
         
     | 
| 374 | 
         
            +
                        clean_up_tokenization_spaces: bool = None,
         
     | 
| 375 | 
         
            +
                        truncate_before_pattern: Optional[List[str]] = None,
         
     | 
| 376 | 
         
            +
                        **kwargs,
         
     | 
| 377 | 
         
            +
                ) -> str:
         
     | 
| 378 | 
         
            +
                    """
         
     | 
| 379 | 
         
            +
                    Converts a sequence of ids in a string, using the tokenizer and vocabulary with options to remove special
         
     | 
| 380 | 
         
            +
                    tokens and clean up tokenization spaces.
         
     | 
| 381 | 
         
            +
             
     | 
| 382 | 
         
            +
                    Similar to doing `self.convert_tokens_to_string(self.convert_ids_to_tokens(token_ids))`.
         
     | 
| 383 | 
         
            +
             
     | 
| 384 | 
         
            +
                    Args:
         
     | 
| 385 | 
         
            +
                        token_ids (`Union[int, List[int], np.ndarray, torch.Tensor, tf.Tensor]`):
         
     | 
| 386 | 
         
            +
                            List of tokenized input ids. Can be obtained using the `__call__` method.
         
     | 
| 387 | 
         
            +
                        skip_special_tokens (`bool`, *optional*, defaults to `False`):
         
     | 
| 388 | 
         
            +
                            Whether or not to remove special tokens in the decoding.
         
     | 
| 389 | 
         
            +
                        clean_up_tokenization_spaces (`bool`, *optional*):
         
     | 
| 390 | 
         
            +
                            Whether or not to clean up the tokenization spaces. If `None`, will default to
         
     | 
| 391 | 
         
            +
                            `self.clean_up_tokenization_spaces` (available in the `tokenizer_config`).
         
     | 
| 392 | 
         
            +
                        truncate_before_pattern (`List[str]`, *optional*, defaults to `None`):
         
     | 
| 393 | 
         
            +
                            A list of regular expression strings that will be used to truncate the returned string. This can be
         
     | 
| 394 | 
         
            +
                            used to remove extra pieces of code (e.g. truncate if observing a comment symbol "#" at the beginning
         
     | 
| 395 | 
         
            +
                            of a new line). An example pattern could be `["^#", re.escape("<|endoftext|>"), "^'''", "\n\n\n"]`.
         
     | 
| 396 | 
         
            +
                        kwargs (additional keyword arguments, *optional*):
         
     | 
| 397 | 
         
            +
                            Will be passed to the underlying model specific decode method.
         
     | 
| 398 | 
         
            +
             
     | 
| 399 | 
         
            +
                    Returns:
         
     | 
| 400 | 
         
            +
                        `str`: The decoded sentence.
         
     | 
| 401 | 
         
            +
                    """
         
     | 
| 402 | 
         
            +
             
     | 
| 403 | 
         
            +
                    token_ids = to_py_obj(token_ids)
         
     | 
| 404 | 
         
            +
             
     | 
| 405 | 
         
            +
                    decoded_text = self._decode(
         
     | 
| 406 | 
         
            +
                        token_ids=token_ids,
         
     | 
| 407 | 
         
            +
                        skip_special_tokens=skip_special_tokens,
         
     | 
| 408 | 
         
            +
                        clean_up_tokenization_spaces=clean_up_tokenization_spaces,
         
     | 
| 409 | 
         
            +
                        **kwargs,
         
     | 
| 410 | 
         
            +
                    )
         
     | 
| 411 | 
         
            +
             
     | 
| 412 | 
         
            +
                    if truncate_before_pattern is not None and len(truncate_before_pattern) > 0:
         
     | 
| 413 | 
         
            +
                        decoded_text = self.truncate(decoded_text, truncate_before_pattern)
         
     | 
| 414 | 
         
            +
             
     | 
| 415 | 
         
            +
                    return decoded_text
         
     | 
| 416 | 
         
            +
             
     | 
| 417 | 
         
            +
                def _decode(
         
     | 
| 418 | 
         
            +
                        self,
         
     | 
| 419 | 
         
            +
                        token_ids: List[int],
         
     | 
| 420 | 
         
            +
                        skip_special_tokens: bool = False,
         
     | 
| 421 | 
         
            +
                        clean_up_tokenization_spaces: bool = None,
         
     | 
| 422 | 
         
            +
                        spaces_between_special_tokens: bool = True,
         
     | 
| 423 | 
         
            +
                        **kwargs,
         
     | 
| 424 | 
         
            +
                ) -> str:
         
     | 
| 425 | 
         
            +
             
     | 
| 426 | 
         
            +
                    def _decode_imgurl(img_token_ids):
         
     | 
| 427 | 
         
            +
                        assert img_token_ids[0] == self.img_start_id and img_token_ids[-1] == self.img_end_id
         
     | 
| 428 | 
         
            +
                        img_token_ids = img_token_ids[1:-1]
         
     | 
| 429 | 
         
            +
                        img_token_ids = img_token_ids[: img_token_ids.index(self.img_pad_id)]
         
     | 
| 430 | 
         
            +
                        return [self.img_start_id] + img_token_ids + [self.img_end_id]
         
     | 
| 431 | 
         
            +
             
     | 
| 432 | 
         
            +
                    token_ids = _replace_closed_tag(token_ids, self.img_start_id, self.img_end_id, _decode_imgurl)
         
     | 
| 433 | 
         
            +
             
     | 
| 434 | 
         
            +
                    return super()._decode(
         
     | 
| 435 | 
         
            +
                        token_ids, skip_special_tokens, clean_up_tokenization_spaces, spaces_between_special_tokens, **kwargs
         
     | 
| 436 | 
         
            +
                    )
         
     | 
| 437 | 
         
            +
             
     | 
| 438 | 
         
            +
                def truncate(self, completion, truncate_before_pattern):
         
     | 
| 439 | 
         
            +
                    def find_re(string, pattern, start_pos):
         
     | 
| 440 | 
         
            +
                        m = pattern.search(string, start_pos)
         
     | 
| 441 | 
         
            +
                        return m.start() if m else -1
         
     | 
| 442 | 
         
            +
             
     | 
| 443 | 
         
            +
                    terminals = [re.compile(pattern, re.MULTILINE) for pattern in truncate_before_pattern]
         
     | 
| 444 | 
         
            +
             
     | 
| 445 | 
         
            +
                    prints = list(re.finditer("^print", completion, re.MULTILINE))
         
     | 
| 446 | 
         
            +
             
     | 
| 447 | 
         
            +
                    if len(prints) > 1:
         
     | 
| 448 | 
         
            +
                        completion = completion[: prints[1].start()]
         
     | 
| 449 | 
         
            +
             
     | 
| 450 | 
         
            +
                    defs = list(re.finditer("^def", completion, re.MULTILINE))
         
     | 
| 451 | 
         
            +
             
     | 
| 452 | 
         
            +
                    if len(defs) > 1:
         
     | 
| 453 | 
         
            +
                        completion = completion[: defs[1].start()]
         
     | 
| 454 | 
         
            +
             
     | 
| 455 | 
         
            +
                    start_pos = 0
         
     | 
| 456 | 
         
            +
             
     | 
| 457 | 
         
            +
                    terminals_pos = [
         
     | 
| 458 | 
         
            +
                        pos for pos in [find_re(completion, terminal, start_pos) for terminal in terminals] if pos != -1
         
     | 
| 459 | 
         
            +
                    ]
         
     | 
| 460 | 
         
            +
             
     | 
| 461 | 
         
            +
                    if len(terminals_pos) > 0:
         
     | 
| 462 | 
         
            +
                        return completion[: min(terminals_pos)]
         
     | 
| 463 | 
         
            +
                    else:
         
     | 
| 464 | 
         
            +
                        return completion
         
     | 
| 465 | 
         
            +
             
     | 
| 466 | 
         
            +
                def from_list_format(self, list_format: List[Dict]):
         
     | 
| 467 | 
         
            +
                    text = ''
         
     | 
| 468 | 
         
            +
                    num_images = 0
         
     | 
| 469 | 
         
            +
                    for ele in list_format:
         
     | 
| 470 | 
         
            +
                        if 'image' in ele:
         
     | 
| 471 | 
         
            +
                            num_images += 1
         
     | 
| 472 | 
         
            +
                            text += f'Picture {num_images}:'
         
     | 
| 473 | 
         
            +
                            text += self.image_start_tag + ele['image'] + self.image_end_tag
         
     | 
| 474 | 
         
            +
                            text += '\n'
         
     | 
| 475 | 
         
            +
                        elif 'text' in ele:
         
     | 
| 476 | 
         
            +
                            text += ele['text']
         
     | 
| 477 | 
         
            +
                        elif 'box' in ele:
         
     | 
| 478 | 
         
            +
                            if 'ref' in ele:
         
     | 
| 479 | 
         
            +
                                text += self.ref_start_tag + ele['ref'] + self.ref_end_tag
         
     | 
| 480 | 
         
            +
                            for box in ele['box']:
         
     | 
| 481 | 
         
            +
                                text += self.box_start_tag + '(%d,%d),(%d,%d)' % (box[0], box[1], box[2], box[3]) + self.box_end_tag
         
     | 
| 482 | 
         
            +
                        else:
         
     | 
| 483 | 
         
            +
                            raise ValueError("Unsupport element: " + str(ele))
         
     | 
| 484 | 
         
            +
                    return text
         
     | 
| 485 | 
         
            +
             
     | 
| 486 | 
         
            +
                def _fetch_latest_picture(self, response, history):
         
     | 
| 487 | 
         
            +
                    if history is None:
         
     | 
| 488 | 
         
            +
                        history = []
         
     | 
| 489 | 
         
            +
                    _history = history + [(response, None)]
         
     | 
| 490 | 
         
            +
                    for q, r in _history[::-1]:
         
     | 
| 491 | 
         
            +
                        for ele in self.to_list_format(q)[::-1]:
         
     | 
| 492 | 
         
            +
                            if 'image' in ele:
         
     | 
| 493 | 
         
            +
                                return ele['image']
         
     | 
| 494 | 
         
            +
                    return None
         
     | 
| 495 | 
         
            +
             
     | 
| 496 | 
         
            +
                def _fetch_all_box_with_ref(self, text):
         
     | 
| 497 | 
         
            +
                    list_format = self.to_list_format(text)
         
     | 
| 498 | 
         
            +
                    output = []
         
     | 
| 499 | 
         
            +
                    for i, ele in enumerate(list_format):
         
     | 
| 500 | 
         
            +
                        if 'box' in ele:
         
     | 
| 501 | 
         
            +
                            bbox = tuple(map(int, ele['box'].replace('(', '').replace(')', '').split(',')))
         
     | 
| 502 | 
         
            +
                            assert len(bbox) == 4
         
     | 
| 503 | 
         
            +
                            output.append({'box': bbox})
         
     | 
| 504 | 
         
            +
                            if i > 0 and 'ref' in list_format[i - 1]:
         
     | 
| 505 | 
         
            +
                                output[-1]['ref'] = list_format[i - 1]['ref'].strip()
         
     | 
| 506 | 
         
            +
                    return output
         
     | 
| 507 | 
         
            +
             
     | 
| 508 | 
         
            +
                def draw_bbox_on_latest_picture(
         
     | 
| 509 | 
         
            +
                        self,
         
     | 
| 510 | 
         
            +
                        response,
         
     | 
| 511 | 
         
            +
                        history=None,
         
     | 
| 512 | 
         
            +
                ) -> Optional[Image.Image]:
         
     | 
| 513 | 
         
            +
                    image = self._fetch_latest_picture(response, history)
         
     | 
| 514 | 
         
            +
                    if image is None:
         
     | 
| 515 | 
         
            +
                        return None
         
     | 
| 516 | 
         
            +
                    if image.startswith("http://") or image.startswith("https://"):
         
     | 
| 517 | 
         
            +
                        image = Image.open(requests.get(image, stream=True).raw).convert("RGB")
         
     | 
| 518 | 
         
            +
                        h, w = image.height, image.width
         
     | 
| 519 | 
         
            +
                    else:
         
     | 
| 520 | 
         
            +
                        image = np.asarray(Image.open(image).convert("RGB"))
         
     | 
| 521 | 
         
            +
                        h, w = image.shape[0], image.shape[1]
         
     | 
| 522 | 
         
            +
                    visualizer = Visualizer(image)
         
     | 
| 523 | 
         
            +
             
     | 
| 524 | 
         
            +
                    boxes = self._fetch_all_box_with_ref(response)
         
     | 
| 525 | 
         
            +
                    if not boxes:
         
     | 
| 526 | 
         
            +
                        return None
         
     | 
| 527 | 
         
            +
                    color = random.choice([_ for _ in mcolors.TABLEAU_COLORS.keys()])  # init color
         
     | 
| 528 | 
         
            +
                    for box in boxes:
         
     | 
| 529 | 
         
            +
                        if 'ref' in box:  # random new color for new refexps
         
     | 
| 530 | 
         
            +
                            color = random.choice([_ for _ in mcolors.TABLEAU_COLORS.keys()])
         
     | 
| 531 | 
         
            +
                        x1, y1, x2, y2 = box['box']
         
     | 
| 532 | 
         
            +
                        x1, y1, x2, y2 = (int(x1 / 1000 * w), int(y1 / 1000 * h), int(x2 / 1000 * w), int(y2 / 1000 * h))
         
     | 
| 533 | 
         
            +
                        visualizer.draw_box((x1, y1, x2, y2), alpha=1, edge_color=color)
         
     | 
| 534 | 
         
            +
                        if 'ref' in box:
         
     | 
| 535 | 
         
            +
                            visualizer.draw_text(box['ref'], (x1, y1), color=color, horizontal_alignment="left")
         
     | 
| 536 | 
         
            +
                    return visualizer.output
         
     | 
| 537 | 
         
            +
             
     | 
| 538 | 
         
            +
             
     | 
| 539 | 
         
            +
            class VisImage:
         
     | 
| 540 | 
         
            +
                def __init__(self, img, scale=1.0):
         
     | 
| 541 | 
         
            +
                    self.img = img
         
     | 
| 542 | 
         
            +
                    self.scale = scale
         
     | 
| 543 | 
         
            +
                    self.width, self.height = img.shape[1], img.shape[0]
         
     | 
| 544 | 
         
            +
                    self._setup_figure(img)
         
     | 
| 545 | 
         
            +
             
     | 
| 546 | 
         
            +
                def _setup_figure(self, img):
         
     | 
| 547 | 
         
            +
                    fig = mplfigure.Figure(frameon=False)
         
     | 
| 548 | 
         
            +
                    self.dpi = fig.get_dpi()
         
     | 
| 549 | 
         
            +
                    # add a small 1e-2 to avoid precision lost due to matplotlib's truncation
         
     | 
| 550 | 
         
            +
                    # (https://github.com/matplotlib/matplotlib/issues/15363)
         
     | 
| 551 | 
         
            +
                    fig.set_size_inches(
         
     | 
| 552 | 
         
            +
                        (self.width * self.scale + 1e-2) / self.dpi,
         
     | 
| 553 | 
         
            +
                        (self.height * self.scale + 1e-2) / self.dpi,
         
     | 
| 554 | 
         
            +
                    )
         
     | 
| 555 | 
         
            +
                    self.canvas = FigureCanvasAgg(fig)
         
     | 
| 556 | 
         
            +
                    # self.canvas = mpl.backends.backend_cairo.FigureCanvasCairo(fig)
         
     | 
| 557 | 
         
            +
                    ax = fig.add_axes([0.0, 0.0, 1.0, 1.0])
         
     | 
| 558 | 
         
            +
                    ax.axis("off")
         
     | 
| 559 | 
         
            +
                    self.fig = fig
         
     | 
| 560 | 
         
            +
                    self.ax = ax
         
     | 
| 561 | 
         
            +
                    self.reset_image(img)
         
     | 
| 562 | 
         
            +
             
     | 
| 563 | 
         
            +
                def reset_image(self, img):
         
     | 
| 564 | 
         
            +
                    img = img.astype("uint8")
         
     | 
| 565 | 
         
            +
                    self.ax.imshow(img, extent=(0, self.width, self.height, 0), interpolation="nearest")
         
     | 
| 566 | 
         
            +
             
     | 
| 567 | 
         
            +
                def save(self, filepath):
         
     | 
| 568 | 
         
            +
                    self.fig.savefig(filepath)
         
     | 
| 569 | 
         
            +
             
     | 
| 570 | 
         
            +
                def get_image(self):
         
     | 
| 571 | 
         
            +
                    canvas = self.canvas
         
     | 
| 572 | 
         
            +
                    s, (width, height) = canvas.print_to_buffer()
         
     | 
| 573 | 
         
            +
             
     | 
| 574 | 
         
            +
                    buffer = np.frombuffer(s, dtype="uint8")
         
     | 
| 575 | 
         
            +
             
     | 
| 576 | 
         
            +
                    img_rgba = buffer.reshape(height, width, 4)
         
     | 
| 577 | 
         
            +
                    rgb, alpha = np.split(img_rgba, [3], axis=2)
         
     | 
| 578 | 
         
            +
                    return rgb.astype("uint8")
         
     | 
| 579 | 
         
            +
             
     | 
| 580 | 
         
            +
             
     | 
| 581 | 
         
            +
            class Visualizer:
         
     | 
| 582 | 
         
            +
                def __init__(self, img_rgb, metadata=None, scale=1.0):
         
     | 
| 583 | 
         
            +
                    self.img = np.asarray(img_rgb).clip(0, 255).astype(np.uint8)
         
     | 
| 584 | 
         
            +
                    self.output = VisImage(self.img, scale=scale)
         
     | 
| 585 | 
         
            +
                    self.cpu_device = torch.device("cpu")
         
     | 
| 586 | 
         
            +
             
     | 
| 587 | 
         
            +
                    # too small texts are useless, therefore clamp to 14
         
     | 
| 588 | 
         
            +
                    self._default_font_size = max(
         
     | 
| 589 | 
         
            +
                        np.sqrt(self.output.height * self.output.width) // 30, 15 // scale
         
     | 
| 590 | 
         
            +
                    )
         
     | 
| 591 | 
         
            +
             
     | 
| 592 | 
         
            +
                def draw_text(
         
     | 
| 593 | 
         
            +
                        self,
         
     | 
| 594 | 
         
            +
                        text,
         
     | 
| 595 | 
         
            +
                        position,
         
     | 
| 596 | 
         
            +
                        *,
         
     | 
| 597 | 
         
            +
                        font_size=None,
         
     | 
| 598 | 
         
            +
                        color="g",
         
     | 
| 599 | 
         
            +
                        horizontal_alignment="center",
         
     | 
| 600 | 
         
            +
                        rotation=0,
         
     | 
| 601 | 
         
            +
                ):
         
     | 
| 602 | 
         
            +
                    if not font_size:
         
     | 
| 603 | 
         
            +
                        font_size = self._default_font_size
         
     | 
| 604 | 
         
            +
             
     | 
| 605 | 
         
            +
                    # since the text background is dark, we don't want the text to be dark
         
     | 
| 606 | 
         
            +
                    color = np.maximum(list(mplc.to_rgb(color)), 0.2)
         
     | 
| 607 | 
         
            +
                    color[np.argmax(color)] = max(0.8, np.max(color))
         
     | 
| 608 | 
         
            +
             
     | 
| 609 | 
         
            +
                    x, y = position
         
     | 
| 610 | 
         
            +
                    self.output.ax.text(
         
     | 
| 611 | 
         
            +
                        x,
         
     | 
| 612 | 
         
            +
                        y,
         
     | 
| 613 | 
         
            +
                        text,
         
     | 
| 614 | 
         
            +
                        size=font_size * self.output.scale,
         
     | 
| 615 | 
         
            +
                        bbox={"facecolor": "black", "alpha": 0.8, "pad": 0.7, "edgecolor": "none"},
         
     | 
| 616 | 
         
            +
                        verticalalignment="top",
         
     | 
| 617 | 
         
            +
                        horizontalalignment=horizontal_alignment,
         
     | 
| 618 | 
         
            +
                        color=color,
         
     | 
| 619 | 
         
            +
                        zorder=10,
         
     | 
| 620 | 
         
            +
                        rotation=rotation,
         
     | 
| 621 | 
         
            +
                    )
         
     | 
| 622 | 
         
            +
                    return self.output
         
     | 
| 623 | 
         
            +
             
     | 
| 624 | 
         
            +
                def draw_box(self, box_coord, alpha=0.5, edge_color="g", line_style="-"):
         
     | 
| 625 | 
         
            +
                    x0, y0, x1, y1 = box_coord
         
     | 
| 626 | 
         
            +
                    width = x1 - x0
         
     | 
| 627 | 
         
            +
                    height = y1 - y0
         
     | 
| 628 | 
         
            +
             
     | 
| 629 | 
         
            +
                    linewidth = max(self._default_font_size / 4, 1)
         
     | 
| 630 | 
         
            +
             
     | 
| 631 | 
         
            +
                    self.output.ax.add_patch(
         
     | 
| 632 | 
         
            +
                        mpl.patches.Rectangle(
         
     | 
| 633 | 
         
            +
                            (x0, y0),
         
     | 
| 634 | 
         
            +
                            width,
         
     | 
| 635 | 
         
            +
                            height,
         
     | 
| 636 | 
         
            +
                            fill=False,
         
     | 
| 637 | 
         
            +
                            edgecolor=edge_color,
         
     | 
| 638 | 
         
            +
                            linewidth=linewidth * self.output.scale,
         
     | 
| 639 | 
         
            +
                            alpha=alpha,
         
     | 
| 640 | 
         
            +
                            linestyle=line_style,
         
     | 
| 641 | 
         
            +
                        )
         
     | 
| 642 | 
         
            +
                    )
         
     | 
| 643 | 
         
            +
                    return self.output
         
     | 
| 644 | 
         
            +
             
     | 
| 645 | 
         
            +
                def get_output(self):
         
     | 
| 646 | 
         
            +
                    return self.output
         
     |