Add Arctic modeling/config/tokenization files (#3)
Browse files- Add Arctic modeling/config/tokenization files (2af13d229ef34519e40d05fcadb390e0e25c0a2f)
- Update AutoTokenizer path (ecca7ac97dd6c7365a5c65f61868101d7c624659)
- Revert extraneous tokenizer config changes (f9281b708c4e07b2348d2f7d71a9816d32eca8a4)
Co-authored-by: Tom Aarsen <[email protected]>
- config.json +6 -0
- configuration_arctic.py +216 -0
- modeling_arctic.py +1943 -0
- tokenization_arctic.py +57 -0
- tokenizer_config.json +3 -0
    	
        config.json
    CHANGED
    
    | @@ -3,6 +3,12 @@ | |
| 3 | 
             
                "ArcticForCausalLM"
         | 
| 4 | 
             
              ],
         | 
| 5 | 
             
              "attention_dropout": 0,
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 6 | 
             
              "bos_token_id": 31998,
         | 
| 7 | 
             
              "enable_expert_tensor_parallelism": false,
         | 
| 8 | 
             
              "enc_index": [
         | 
|  | |
| 3 | 
             
                "ArcticForCausalLM"
         | 
| 4 | 
             
              ],
         | 
| 5 | 
             
              "attention_dropout": 0,
         | 
| 6 | 
            +
              "auto_map": {
         | 
| 7 | 
            +
                "AutoConfig": "configuration_arctic.ArcticConfig",
         | 
| 8 | 
            +
                "AutoModel": "modeling_arctic.ArcticModel",
         | 
| 9 | 
            +
                "AutoModelForCausalLM": "modeling_arctic.ArcticForCausalLM",
         | 
| 10 | 
            +
                "AutoModelForSequenceClassification": "modeling_arctic.ArcticForSequenceClassification"
         | 
| 11 | 
            +
              },
         | 
| 12 | 
             
              "bos_token_id": 31998,
         | 
| 13 | 
             
              "enable_expert_tensor_parallelism": false,
         | 
| 14 | 
             
              "enc_index": [
         | 
    	
        configuration_arctic.py
    ADDED
    
    | @@ -0,0 +1,216 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # Copyright 2023 Snowflake AI and the HuggingFace Inc. team. All rights reserved.
         | 
| 2 | 
            +
            #
         | 
| 3 | 
            +
            # Licensed under the Apache License, Version 2.0 (the "License");
         | 
| 4 | 
            +
            # you may not use this file except in compliance with the License.
         | 
| 5 | 
            +
            # You may obtain a copy of the License at
         | 
| 6 | 
            +
            #
         | 
| 7 | 
            +
            #     http://www.apache.org/licenses/LICENSE-2.0
         | 
| 8 | 
            +
            #
         | 
| 9 | 
            +
            # Unless required by applicable law or agreed to in writing, software
         | 
| 10 | 
            +
            # distributed under the License is distributed on an "AS IS" BASIS,
         | 
| 11 | 
            +
            # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
         | 
| 12 | 
            +
            # See the License for the specific language governing permissions and
         | 
| 13 | 
            +
            # limitations under the License.
         | 
| 14 | 
            +
            """ Arctic model configuration"""
         | 
| 15 | 
            +
             | 
| 16 | 
            +
            from dataclasses import asdict, dataclass
         | 
| 17 | 
            +
            from typing import Any, Dict
         | 
| 18 | 
            +
             | 
| 19 | 
            +
            from transformers.configuration_utils import PretrainedConfig
         | 
| 20 | 
            +
            from transformers.utils import logging
         | 
| 21 | 
            +
             | 
| 22 | 
            +
             | 
| 23 | 
            +
            logger = logging.get_logger(__name__)
         | 
| 24 | 
            +
             | 
| 25 | 
            +
            ARCTIC_PRETRAINED_CONFIG_ARCHIVE_MAP = {
         | 
| 26 | 
            +
                "arctic": "https://huggingface.co/Snowflake/snowflake-arctic-instruct/tree/main/config.json",
         | 
| 27 | 
            +
            }
         | 
| 28 | 
            +
             | 
| 29 | 
            +
             | 
| 30 | 
            +
            @dataclass
         | 
| 31 | 
            +
            class ArcticLoraConfig:
         | 
| 32 | 
            +
                lora_r: int = 64
         | 
| 33 | 
            +
                lora_alpha: float = 16
         | 
| 34 | 
            +
                shard_base_weights: bool = False
         | 
| 35 | 
            +
             | 
| 36 | 
            +
             | 
| 37 | 
            +
            @dataclass
         | 
| 38 | 
            +
            class ArcticQuantizationConfig:
         | 
| 39 | 
            +
                q_bits: int = 8
         | 
| 40 | 
            +
                rounding: str = "nearest"
         | 
| 41 | 
            +
                mantissa_bits: int = 3
         | 
| 42 | 
            +
                group_size: int = 512
         | 
| 43 | 
            +
             | 
| 44 | 
            +
             | 
| 45 | 
            +
            class ArcticConfig(PretrainedConfig):
         | 
| 46 | 
            +
                r"""
         | 
| 47 | 
            +
                This is the configuration class to store the configuration of a [`ArcticModel`]. It is used to instantiate an
         | 
| 48 | 
            +
                Arctic model according to the specified arguments, defining the model architecture. Instantiating a configuration
         | 
| 49 | 
            +
                with the defaults will yield a similar configuration to that of the #TODO(rsamdani): add what model has the default config..
         | 
| 50 | 
            +
             | 
| 51 | 
            +
             | 
| 52 | 
            +
                Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
         | 
| 53 | 
            +
                documentation from [`PretrainedConfig`] for more information.
         | 
| 54 | 
            +
             | 
| 55 | 
            +
             | 
| 56 | 
            +
                Args:
         | 
| 57 | 
            +
                    vocab_size (`int`, *optional*, defaults to 32000):
         | 
| 58 | 
            +
                        Vocabulary size of the Arctic model. Defines the number of different tokens that can be represented by the
         | 
| 59 | 
            +
                        `inputs_ids` passed when calling [`ArcticModel`]
         | 
| 60 | 
            +
                    hidden_size (`int`, *optional*, defaults to 4096):
         | 
| 61 | 
            +
                        Dimension of the hidden representations.
         | 
| 62 | 
            +
                    intermediate_size (`int`, *optional*, defaults to 14336):
         | 
| 63 | 
            +
                        Dimension of the MLP representations.
         | 
| 64 | 
            +
                    num_hidden_layers (`int`, *optional*, defaults to 32):
         | 
| 65 | 
            +
                        Number of hidden layers in the Transformer encoder.
         | 
| 66 | 
            +
                    num_attention_heads (`int`, *optional*, defaults to 32):
         | 
| 67 | 
            +
                        Number of attention heads for each attention layer in the Transformer encoder.
         | 
| 68 | 
            +
                    num_key_value_heads (`int`, *optional*, defaults to 8):
         | 
| 69 | 
            +
                        This is the number of key_value heads that should be used to implement Grouped Query Attention. If
         | 
| 70 | 
            +
                        `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
         | 
| 71 | 
            +
                        `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
         | 
| 72 | 
            +
                        converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
         | 
| 73 | 
            +
                        by meanpooling all the original heads within that group. For more details checkout [this
         | 
| 74 | 
            +
                        paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `8`.
         | 
| 75 | 
            +
                    hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
         | 
| 76 | 
            +
                        The non-linear activation function (function or string) in the decoder.
         | 
| 77 | 
            +
                    max_position_embeddings (`int`, *optional*, defaults to `4096*32`):
         | 
| 78 | 
            +
                        The maximum sequence length that this model might ever be used with. Arctic's sliding window attention
         | 
| 79 | 
            +
                        allows sequence of up to 4096*32 tokens.
         | 
| 80 | 
            +
                    initializer_range (`float`, *optional*, defaults to 0.02):
         | 
| 81 | 
            +
                        The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
         | 
| 82 | 
            +
                    rms_norm_eps (`float`, *optional*, defaults to 1e-05):
         | 
| 83 | 
            +
                        The epsilon used by the rms normalization layers.
         | 
| 84 | 
            +
                    use_cache (`bool`, *optional*, defaults to `True`):
         | 
| 85 | 
            +
                        Whether or not the model should return the last key/values attentions (not used by all models). Only
         | 
| 86 | 
            +
                        relevant if `config.is_decoder=True`.
         | 
| 87 | 
            +
                    pad_token_id (`int`, *optional*):
         | 
| 88 | 
            +
                        The id of the padding token.
         | 
| 89 | 
            +
                    bos_token_id (`int`, *optional*, defaults to 1):
         | 
| 90 | 
            +
                        The id of the "beginning-of-sequence" token.
         | 
| 91 | 
            +
                    eos_token_id (`int`, *optional*, defaults to 2):
         | 
| 92 | 
            +
                        The id of the "end-of-sequence" token.
         | 
| 93 | 
            +
                    tie_word_embeddings (`bool`, *optional*, defaults to `False`):
         | 
| 94 | 
            +
                        Whether the model's input and output word embeddings should be tied.
         | 
| 95 | 
            +
                    rope_theta (`float`, *optional*, defaults to 1000000.0):
         | 
| 96 | 
            +
                        The base period of the RoPE embeddings.
         | 
| 97 | 
            +
                    sliding_window (`int`, *optional*):
         | 
| 98 | 
            +
                        Sliding window attention window size. If not specified, will default to `4096`.
         | 
| 99 | 
            +
                    attention_dropout (`float`, *optional*, defaults to 0.0):
         | 
| 100 | 
            +
                        The dropout ratio for the attention probabilities.
         | 
| 101 | 
            +
                    num_experts_per_tok (`int`, *optional*, defaults to 2):
         | 
| 102 | 
            +
                        The number of experts to root per-token, can be also interpreted as the `top-p` routing
         | 
| 103 | 
            +
                        parameter
         | 
| 104 | 
            +
                    num_local_experts (`int`, *optional*, defaults to 8):
         | 
| 105 | 
            +
                        Number of experts per Sparse MLP layer.
         | 
| 106 | 
            +
                    router_aux_loss_coef (`float`, *optional*, defaults to 0.001):
         | 
| 107 | 
            +
                        The aux loss factor for the total loss.
         | 
| 108 | 
            +
             | 
| 109 | 
            +
                ```python
         | 
| 110 | 
            +
                >>> from transformers import ArcticModel, ArcticConfig
         | 
| 111 | 
            +
             | 
| 112 | 
            +
                >>> # Initializing a Arctic 7B style configuration TODO(rsamdani): verify which model does the default configuration correspond to.
         | 
| 113 | 
            +
                >>> configuration = ArcticConfig()
         | 
| 114 | 
            +
             | 
| 115 | 
            +
                >>> # Initializing a model from the Arctic 7B style configuration
         | 
| 116 | 
            +
                >>> model = ArcticModel(configuration)
         | 
| 117 | 
            +
             | 
| 118 | 
            +
                >>> # Accessing the model configuration
         | 
| 119 | 
            +
                >>> configuration = model.config
         | 
| 120 | 
            +
                ```"""
         | 
| 121 | 
            +
             | 
| 122 | 
            +
                model_type = "arctic"
         | 
| 123 | 
            +
                keys_to_ignore_at_inference = ["past_key_values"]
         | 
| 124 | 
            +
             | 
| 125 | 
            +
                def __init__(
         | 
| 126 | 
            +
                    self,
         | 
| 127 | 
            +
                    vocab_size=32000,
         | 
| 128 | 
            +
                    hidden_size=4096,
         | 
| 129 | 
            +
                    intermediate_size=14336,
         | 
| 130 | 
            +
                    num_hidden_layers=32,
         | 
| 131 | 
            +
                    num_attention_heads=32,
         | 
| 132 | 
            +
                    num_key_value_heads=None,
         | 
| 133 | 
            +
                    hidden_act="silu",
         | 
| 134 | 
            +
                    max_position_embeddings=4096,
         | 
| 135 | 
            +
                    initializer_range=0.02,
         | 
| 136 | 
            +
                    rms_norm_eps=1e-5,
         | 
| 137 | 
            +
                    use_cache=True,
         | 
| 138 | 
            +
                    pad_token_id=None,
         | 
| 139 | 
            +
                    bos_token_id=1,
         | 
| 140 | 
            +
                    eos_token_id=2,
         | 
| 141 | 
            +
                    tie_word_embeddings=False,
         | 
| 142 | 
            +
                    rope_theta=1e6,
         | 
| 143 | 
            +
                    sliding_window=None,
         | 
| 144 | 
            +
                    attention_dropout=0.0,
         | 
| 145 | 
            +
                    num_experts_per_tok=1,
         | 
| 146 | 
            +
                    num_local_experts=8,
         | 
| 147 | 
            +
                    router_aux_loss_coef=0.001,
         | 
| 148 | 
            +
                    moe_layer_frequency=2,
         | 
| 149 | 
            +
                    parallel_attn_mlp_res=False,
         | 
| 150 | 
            +
                    moe_train_capacity_factor=1,
         | 
| 151 | 
            +
                    moe_eval_capacity_factor=1,
         | 
| 152 | 
            +
                    enable_expert_tensor_parallelism=False,
         | 
| 153 | 
            +
                    moe_min_capacity=0,
         | 
| 154 | 
            +
                    moe_token_dropping=True,
         | 
| 155 | 
            +
                    quantization=None,
         | 
| 156 | 
            +
                    **kwargs,
         | 
| 157 | 
            +
                ):
         | 
| 158 | 
            +
                    self.vocab_size = vocab_size
         | 
| 159 | 
            +
                    self.max_position_embeddings = max_position_embeddings
         | 
| 160 | 
            +
                    self.hidden_size = hidden_size
         | 
| 161 | 
            +
                    self.intermediate_size = intermediate_size
         | 
| 162 | 
            +
                    self.num_hidden_layers = num_hidden_layers
         | 
| 163 | 
            +
                    self.num_attention_heads = num_attention_heads
         | 
| 164 | 
            +
                    self.sliding_window = sliding_window
         | 
| 165 | 
            +
             | 
| 166 | 
            +
                    # for backward compatibility
         | 
| 167 | 
            +
                    if num_key_value_heads is None:
         | 
| 168 | 
            +
                        num_key_value_heads = num_attention_heads
         | 
| 169 | 
            +
             | 
| 170 | 
            +
                    self.num_key_value_heads = num_key_value_heads
         | 
| 171 | 
            +
                    self.hidden_act = hidden_act
         | 
| 172 | 
            +
                    self.initializer_range = initializer_range
         | 
| 173 | 
            +
                    self.rms_norm_eps = rms_norm_eps
         | 
| 174 | 
            +
                    self.use_cache = use_cache
         | 
| 175 | 
            +
                    self.rope_theta = rope_theta
         | 
| 176 | 
            +
                    self.attention_dropout = attention_dropout
         | 
| 177 | 
            +
             | 
| 178 | 
            +
                    self.num_experts_per_tok = num_experts_per_tok
         | 
| 179 | 
            +
                    self.num_local_experts = num_local_experts
         | 
| 180 | 
            +
                    self.router_aux_loss_coef = router_aux_loss_coef
         | 
| 181 | 
            +
                    self.moe_layer_frequency = moe_layer_frequency
         | 
| 182 | 
            +
                    self.moe_train_capacity_factor = moe_train_capacity_factor
         | 
| 183 | 
            +
                    self.moe_eval_capacity_factor = moe_eval_capacity_factor
         | 
| 184 | 
            +
                    self.enable_expert_tensor_parallelism = enable_expert_tensor_parallelism
         | 
| 185 | 
            +
                    self.moe_min_capacity = moe_min_capacity
         | 
| 186 | 
            +
                    self.moe_token_dropping = moe_token_dropping
         | 
| 187 | 
            +
                    self.parallel_attn_mlp_res = parallel_attn_mlp_res
         | 
| 188 | 
            +
                    if isinstance(quantization, dict):
         | 
| 189 | 
            +
                        self.quantization = ArcticQuantizationConfig(**quantization)
         | 
| 190 | 
            +
                    else:
         | 
| 191 | 
            +
                        self.quantization = quantization
         | 
| 192 | 
            +
             | 
| 193 | 
            +
                    super().__init__(
         | 
| 194 | 
            +
                        pad_token_id=pad_token_id,
         | 
| 195 | 
            +
                        bos_token_id=bos_token_id,
         | 
| 196 | 
            +
                        eos_token_id=eos_token_id,
         | 
| 197 | 
            +
                        tie_word_embeddings=tie_word_embeddings,
         | 
| 198 | 
            +
                        **kwargs,
         | 
| 199 | 
            +
                    )
         | 
| 200 | 
            +
             | 
| 201 | 
            +
                @classmethod
         | 
| 202 | 
            +
                def from_dict(cls, config_dict: Dict[str, Any], **kwargs) -> "ArcticConfig":
         | 
| 203 | 
            +
                    result = super().from_dict(config_dict, **kwargs)
         | 
| 204 | 
            +
                    if isinstance(result, tuple):
         | 
| 205 | 
            +
                        config = result[0]
         | 
| 206 | 
            +
                    else:
         | 
| 207 | 
            +
                        config = result
         | 
| 208 | 
            +
                    if isinstance(config.quantization, dict):
         | 
| 209 | 
            +
                        config.quantization = ArcticQuantizationConfig(**config.quantization)
         | 
| 210 | 
            +
                    return result
         | 
| 211 | 
            +
             | 
| 212 | 
            +
                def to_dict(self) -> Dict[str, Any]:
         | 
| 213 | 
            +
                    ret = super().to_dict()
         | 
| 214 | 
            +
                    if isinstance(ret["quantization"], ArcticQuantizationConfig):
         | 
| 215 | 
            +
                        ret["quantization"] = asdict(ret["quantization"])
         | 
| 216 | 
            +
                    return ret
         | 
    	
        modeling_arctic.py
    ADDED
    
    | @@ -0,0 +1,1943 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # coding=utf-8
         | 
| 2 | 
            +
            # Copyright 2023 Mistral AI and the HuggingFace Inc. team. All rights reserved.
         | 
| 3 | 
            +
            #
         | 
| 4 | 
            +
            # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
         | 
| 5 | 
            +
            # and OPT implementations in this library. It has been modified from its
         | 
| 6 | 
            +
            # original forms to accommodate minor architectural differences compared
         | 
| 7 | 
            +
            # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
         | 
| 8 | 
            +
            #
         | 
| 9 | 
            +
            # Licensed under the Apache License, Version 2.0 (the "License");
         | 
| 10 | 
            +
            # you may not use this file except in compliance with the License.
         | 
| 11 | 
            +
            # You may obtain a copy of the License at
         | 
| 12 | 
            +
            #
         | 
| 13 | 
            +
            #     http://www.apache.org/licenses/LICENSE-2.0
         | 
| 14 | 
            +
            #
         | 
| 15 | 
            +
            # Unless required by applicable law or agreed to in writing, software
         | 
| 16 | 
            +
            # distributed under the License is distributed on an "AS IS" BASIS,
         | 
| 17 | 
            +
            # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
         | 
| 18 | 
            +
            # See the License for the specific language governing permissions and
         | 
| 19 | 
            +
            # limitations under the License.
         | 
| 20 | 
            +
            """ PyTorch Arctic model."""
         | 
| 21 | 
            +
            import copy
         | 
| 22 | 
            +
            import inspect
         | 
| 23 | 
            +
            import time
         | 
| 24 | 
            +
            import math
         | 
| 25 | 
            +
            import warnings
         | 
| 26 | 
            +
            import re
         | 
| 27 | 
            +
            from typing import List, Optional, Tuple, Union
         | 
| 28 | 
            +
             | 
| 29 | 
            +
            import deepspeed
         | 
| 30 | 
            +
            import torch
         | 
| 31 | 
            +
            import torch.nn.functional as F
         | 
| 32 | 
            +
            import torch.utils.checkpoint
         | 
| 33 | 
            +
            from torch import nn
         | 
| 34 | 
            +
            from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
         | 
| 35 | 
            +
             | 
| 36 | 
            +
            from transformers.activations import ACT2FN
         | 
| 37 | 
            +
            from transformers.cache_utils import Cache, DynamicCache
         | 
| 38 | 
            +
            from transformers.modeling_attn_mask_utils import (
         | 
| 39 | 
            +
                _prepare_4d_causal_attention_mask,
         | 
| 40 | 
            +
                _prepare_4d_causal_attention_mask_for_sdpa,
         | 
| 41 | 
            +
            )
         | 
| 42 | 
            +
            from transformers.modeling_outputs import (
         | 
| 43 | 
            +
                MoeCausalLMOutputWithPast,
         | 
| 44 | 
            +
                MoeModelOutputWithPast,
         | 
| 45 | 
            +
                SequenceClassifierOutputWithPast,
         | 
| 46 | 
            +
            )
         | 
| 47 | 
            +
            from transformers.modeling_utils import PreTrainedModel
         | 
| 48 | 
            +
            from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_13
         | 
| 49 | 
            +
            from transformers.utils import (
         | 
| 50 | 
            +
                add_start_docstrings,
         | 
| 51 | 
            +
                add_start_docstrings_to_model_forward,
         | 
| 52 | 
            +
                is_flash_attn_2_available,
         | 
| 53 | 
            +
                is_flash_attn_greater_or_equal_2_10,
         | 
| 54 | 
            +
                logging,
         | 
| 55 | 
            +
                replace_return_docstrings,
         | 
| 56 | 
            +
            )
         | 
| 57 | 
            +
            from transformers.utils.import_utils import is_torch_fx_available
         | 
| 58 | 
            +
            from .configuration_arctic import ArcticConfig
         | 
| 59 | 
            +
            from transformers.integrations.deepspeed import is_deepspeed_available 
         | 
| 60 | 
            +
            from transformers.utils.versions import require_version
         | 
| 61 | 
            +
             | 
| 62 | 
            +
            if is_deepspeed_available():
         | 
| 63 | 
            +
                from deepspeed.moe.layer import MoE 
         | 
| 64 | 
            +
                # Note that below will crash if there is an available deepspeed that does not have ds_linear.
         | 
| 65 | 
            +
                try:
         | 
| 66 | 
            +
                    import deepspeed.linear as ds_linear
         | 
| 67 | 
            +
                except Exception:
         | 
| 68 | 
            +
                    pass
         | 
| 69 | 
            +
            else:
         | 
| 70 | 
            +
                MoE = None
         | 
| 71 | 
            +
             | 
| 72 | 
            +
            if is_flash_attn_2_available():
         | 
| 73 | 
            +
                from flash_attn import flash_attn_func, flash_attn_varlen_func
         | 
| 74 | 
            +
                from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input  # noqa
         | 
| 75 | 
            +
             | 
| 76 | 
            +
                _flash_supports_window_size = "window_size" in list(inspect.signature(flash_attn_func).parameters)
         | 
| 77 | 
            +
             | 
| 78 | 
            +
            # This makes `_prepare_4d_causal_attention_mask` a leaf function in the FX graph.
         | 
| 79 | 
            +
            # It means that the function will not be traced through and simply appear as a node in the graph.
         | 
| 80 | 
            +
            if is_torch_fx_available():
         | 
| 81 | 
            +
                if not is_torch_greater_or_equal_than_1_13:
         | 
| 82 | 
            +
                    import torch.fx
         | 
| 83 | 
            +
             | 
| 84 | 
            +
                _prepare_4d_causal_attention_mask = torch.fx.wrap(_prepare_4d_causal_attention_mask)
         | 
| 85 | 
            +
             | 
| 86 | 
            +
             | 
| 87 | 
            +
            logger = logging.get_logger(__name__)
         | 
| 88 | 
            +
             | 
| 89 | 
            +
            _CONFIG_FOR_DOC = "ArcticConfig"
         | 
| 90 | 
            +
            USE_DEEPSPEED_MOE_ARG = "use_deepspeed_moe_implementation"
         | 
| 91 | 
            +
            MOE_EXPERT_PARALLEL_SIZE_ARG = "moe_expert_parallel_size"
         | 
| 92 | 
            +
            DEEPSPEED_QUANTIZATION_CONFIG = "deepspeed_quantization"
         | 
| 93 | 
            +
            DEEPSPEED_LORA_CONFIG = "deepspeed_lora"
         | 
| 94 | 
            +
            QUANTIZATION_CONFIG = "ds_quantization_config"
         | 
| 95 | 
            +
             | 
| 96 | 
            +
            # REQUIRED_DEEPSPEED_VERSION = "deepspeed>0.14.5"
         | 
| 97 | 
            +
            # def is_deepspeed_valid_and_available(raise_error=False, error_msg=""):
         | 
| 98 | 
            +
            #     available_and_valid = True
         | 
| 99 | 
            +
            #     if not is_deepspeed_available():
         | 
| 100 | 
            +
            #         available_and_valid = False
         | 
| 101 | 
            +
            #         if raise_error:
         | 
| 102 | 
            +
            #             raise ValueError(f"DeepSpeed is required for this feature, {error_msg}")
         | 
| 103 | 
            +
            #     else:
         | 
| 104 | 
            +
                    
         | 
| 105 | 
            +
            #     return available_and_valid
         | 
| 106 | 
            +
             | 
| 107 | 
            +
            def load_balancing_loss_func(
         | 
| 108 | 
            +
                gate_logits: torch.Tensor, num_experts: torch.Tensor = None, top_k=4, attention_mask: Optional[torch.Tensor] = None
         | 
| 109 | 
            +
            ) -> float:
         | 
| 110 | 
            +
                r"""
         | 
| 111 | 
            +
                Computes auxiliary load balancing loss as in Switch Transformer - implemented in Pytorch.
         | 
| 112 | 
            +
             | 
| 113 | 
            +
                See Switch Transformer (https://arxiv.org/abs/2101.03961) for more details. This function implements the loss
         | 
| 114 | 
            +
                function presented in equations (4) - (6) of the paper. It aims at penalizing cases where the routing between
         | 
| 115 | 
            +
                experts is too unbalanced.
         | 
| 116 | 
            +
             | 
| 117 | 
            +
                Args:
         | 
| 118 | 
            +
                    gate_logits (Union[`torch.Tensor`, Tuple[torch.Tensor]):
         | 
| 119 | 
            +
                        Logits from the `gate`, should be a tuple of model.config.num_hidden_layers tensors of
         | 
| 120 | 
            +
                        shape [batch_size X sequence_length, num_experts].
         | 
| 121 | 
            +
                    attention_mask (`torch.Tensor`, None):
         | 
| 122 | 
            +
                        The attention_mask used in forward function
         | 
| 123 | 
            +
                        shape [batch_size X sequence_length] if not None.
         | 
| 124 | 
            +
                    num_experts (`int`, *optional*):
         | 
| 125 | 
            +
                        Number of experts
         | 
| 126 | 
            +
             | 
| 127 | 
            +
                Returns:
         | 
| 128 | 
            +
                    The auxiliary loss.
         | 
| 129 | 
            +
                """
         | 
| 130 | 
            +
                if gate_logits is None or not isinstance(gate_logits, tuple):
         | 
| 131 | 
            +
                    return 0
         | 
| 132 | 
            +
             | 
| 133 | 
            +
                if isinstance(gate_logits, tuple):
         | 
| 134 | 
            +
                    compute_device = gate_logits[0].device
         | 
| 135 | 
            +
                    concatenated_gate_logits = torch.cat([layer_gate.to(compute_device) for layer_gate in gate_logits], dim=0)
         | 
| 136 | 
            +
             | 
| 137 | 
            +
                routing_weights = torch.nn.functional.softmax(concatenated_gate_logits, dim=-1)
         | 
| 138 | 
            +
             | 
| 139 | 
            +
                _, selected_experts = torch.topk(routing_weights, top_k, dim=-1)
         | 
| 140 | 
            +
             | 
| 141 | 
            +
                expert_mask = torch.nn.functional.one_hot(selected_experts, num_experts)
         | 
| 142 | 
            +
             | 
| 143 | 
            +
                if attention_mask is None:
         | 
| 144 | 
            +
                    # Compute the percentage of tokens routed to each experts
         | 
| 145 | 
            +
                    tokens_per_expert = torch.mean(expert_mask.float(), dim=0)
         | 
| 146 | 
            +
             | 
| 147 | 
            +
                    # Compute the average probability of routing to these experts
         | 
| 148 | 
            +
                    router_prob_per_expert = torch.mean(routing_weights, dim=0)
         | 
| 149 | 
            +
                else:
         | 
| 150 | 
            +
                    batch_size, sequence_length = attention_mask.shape
         | 
| 151 | 
            +
                    num_hidden_layers = concatenated_gate_logits.shape[0] // (batch_size * sequence_length)
         | 
| 152 | 
            +
             | 
| 153 | 
            +
                    # Compute the mask that masks all padding tokens as 0 with the same shape of expert_mask
         | 
| 154 | 
            +
                    expert_attention_mask = (
         | 
| 155 | 
            +
                        attention_mask[None, :, :, None, None]
         | 
| 156 | 
            +
                        .expand((num_hidden_layers, batch_size, sequence_length, 2, num_experts))
         | 
| 157 | 
            +
                        .reshape(-1, 2, num_experts)
         | 
| 158 | 
            +
                        .to(compute_device)
         | 
| 159 | 
            +
                    )
         | 
| 160 | 
            +
             | 
| 161 | 
            +
                    # Compute the percentage of tokens routed to each experts
         | 
| 162 | 
            +
                    tokens_per_expert = torch.sum(expert_mask.float() * expert_attention_mask, dim=0) / torch.sum(
         | 
| 163 | 
            +
                        expert_attention_mask, dim=0
         | 
| 164 | 
            +
                    )
         | 
| 165 | 
            +
             | 
| 166 | 
            +
                    # Compute the mask that masks all padding tokens as 0 with the same shape of tokens_per_expert
         | 
| 167 | 
            +
                    router_per_expert_attention_mask = (
         | 
| 168 | 
            +
                        attention_mask[None, :, :, None]
         | 
| 169 | 
            +
                        .expand((num_hidden_layers, batch_size, sequence_length, num_experts))
         | 
| 170 | 
            +
                        .reshape(-1, num_experts)
         | 
| 171 | 
            +
                        .to(compute_device)
         | 
| 172 | 
            +
                    )
         | 
| 173 | 
            +
             | 
| 174 | 
            +
                    # Compute the average probability of routing to these experts
         | 
| 175 | 
            +
                    router_prob_per_expert = torch.sum(routing_weights * router_per_expert_attention_mask, dim=0) / torch.sum(
         | 
| 176 | 
            +
                        router_per_expert_attention_mask, dim=0
         | 
| 177 | 
            +
                    )
         | 
| 178 | 
            +
             | 
| 179 | 
            +
                overall_loss = torch.sum(tokens_per_expert * router_prob_per_expert.unsqueeze(0))
         | 
| 180 | 
            +
                return overall_loss * num_experts
         | 
| 181 | 
            +
             | 
| 182 | 
            +
             | 
| 183 | 
            +
            # Copied from transformers.models.llama.modeling_llama._get_unpad_data
         | 
| 184 | 
            +
            def _get_unpad_data(attention_mask):
         | 
| 185 | 
            +
                seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
         | 
| 186 | 
            +
                indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
         | 
| 187 | 
            +
                max_seqlen_in_batch = seqlens_in_batch.max().item()
         | 
| 188 | 
            +
                cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0))
         | 
| 189 | 
            +
                return (
         | 
| 190 | 
            +
                    indices,
         | 
| 191 | 
            +
                    cu_seqlens,
         | 
| 192 | 
            +
                    max_seqlen_in_batch,
         | 
| 193 | 
            +
                )
         | 
| 194 | 
            +
             | 
| 195 | 
            +
             | 
| 196 | 
            +
            # Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->Arctic
         | 
| 197 | 
            +
            class ArcticRMSNorm(nn.Module):
         | 
| 198 | 
            +
                def __init__(self, hidden_size, eps=1e-6):
         | 
| 199 | 
            +
                    """
         | 
| 200 | 
            +
                    ArcticRMSNorm is equivalent to T5LayerNorm
         | 
| 201 | 
            +
                    """
         | 
| 202 | 
            +
                    super().__init__()
         | 
| 203 | 
            +
                    self.weight = nn.Parameter(torch.ones(hidden_size))
         | 
| 204 | 
            +
                    self.variance_epsilon = eps
         | 
| 205 | 
            +
             | 
| 206 | 
            +
                def forward(self, hidden_states):
         | 
| 207 | 
            +
                    input_dtype = hidden_states.dtype
         | 
| 208 | 
            +
                    hidden_states = hidden_states.to(torch.float32)
         | 
| 209 | 
            +
                    variance = hidden_states.pow(2).mean(-1, keepdim=True)
         | 
| 210 | 
            +
                    hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
         | 
| 211 | 
            +
                    return self.weight * hidden_states.to(input_dtype)
         | 
| 212 | 
            +
             | 
| 213 | 
            +
             | 
| 214 | 
            +
            # Copied from transformers.models.llama.modeling_llama.LlamaRotaryEmbedding with Llama->Arctic
         | 
| 215 | 
            +
            class ArcticRotaryEmbedding(nn.Module):
         | 
| 216 | 
            +
                def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
         | 
| 217 | 
            +
                    super().__init__()
         | 
| 218 | 
            +
             | 
| 219 | 
            +
                    self.dim = dim
         | 
| 220 | 
            +
                    self.max_position_embeddings = max_position_embeddings
         | 
| 221 | 
            +
                    self.base = base
         | 
| 222 | 
            +
                    inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
         | 
| 223 | 
            +
                    self.register_buffer("inv_freq", inv_freq, persistent=False)
         | 
| 224 | 
            +
             | 
| 225 | 
            +
                    # Build here to make `torch.jit.trace` work.
         | 
| 226 | 
            +
                    self._set_cos_sin_cache(
         | 
| 227 | 
            +
                        seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
         | 
| 228 | 
            +
                    )
         | 
| 229 | 
            +
             | 
| 230 | 
            +
                def _set_cos_sin_cache(self, seq_len, device, dtype):
         | 
| 231 | 
            +
                    self.max_seq_len_cached = seq_len
         | 
| 232 | 
            +
                    t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
         | 
| 233 | 
            +
             | 
| 234 | 
            +
                    freqs = torch.outer(t, self.inv_freq)
         | 
| 235 | 
            +
                    # Different from paper, but it uses a different permutation in order to obtain the same calculation
         | 
| 236 | 
            +
                    emb = torch.cat((freqs, freqs), dim=-1)
         | 
| 237 | 
            +
                    self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
         | 
| 238 | 
            +
                    self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
         | 
| 239 | 
            +
             | 
| 240 | 
            +
                def forward(self, x, seq_len=None):
         | 
| 241 | 
            +
                    # x: [bs, num_attention_heads, seq_len, head_size]
         | 
| 242 | 
            +
                    if seq_len > self.max_seq_len_cached:
         | 
| 243 | 
            +
                        self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
         | 
| 244 | 
            +
             | 
| 245 | 
            +
                    return (
         | 
| 246 | 
            +
                        self.cos_cached[:seq_len].to(dtype=x.dtype),
         | 
| 247 | 
            +
                        self.sin_cached[:seq_len].to(dtype=x.dtype),
         | 
| 248 | 
            +
                    )
         | 
| 249 | 
            +
             | 
| 250 | 
            +
             | 
| 251 | 
            +
            # Copied from transformers.models.llama.modeling_llama.rotate_half
         | 
| 252 | 
            +
            def rotate_half(x):
         | 
| 253 | 
            +
                """Rotates half the hidden dims of the input."""
         | 
| 254 | 
            +
                x1 = x[..., : x.shape[-1] // 2]
         | 
| 255 | 
            +
                x2 = x[..., x.shape[-1] // 2 :]
         | 
| 256 | 
            +
                return torch.cat((-x2, x1), dim=-1)
         | 
| 257 | 
            +
             | 
| 258 | 
            +
             | 
| 259 | 
            +
            # Copied from transformers.models.llama.modeling_llama.apply_rotary_pos_emb
         | 
| 260 | 
            +
            def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
         | 
| 261 | 
            +
                """Applies Rotary Position Embedding to the query and key tensors.
         | 
| 262 | 
            +
             | 
| 263 | 
            +
                Args:
         | 
| 264 | 
            +
                    q (`torch.Tensor`): The query tensor.
         | 
| 265 | 
            +
                    k (`torch.Tensor`): The key tensor.
         | 
| 266 | 
            +
                    cos (`torch.Tensor`): The cosine part of the rotary embedding.
         | 
| 267 | 
            +
                    sin (`torch.Tensor`): The sine part of the rotary embedding.
         | 
| 268 | 
            +
                    position_ids (`torch.Tensor`):
         | 
| 269 | 
            +
                        The position indices of the tokens corresponding to the query and key tensors. For example, this can be
         | 
| 270 | 
            +
                        used to pass offsetted position ids when working with a KV-cache.
         | 
| 271 | 
            +
                    unsqueeze_dim (`int`, *optional*, defaults to 1):
         | 
| 272 | 
            +
                        The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
         | 
| 273 | 
            +
                        sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
         | 
| 274 | 
            +
                        that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
         | 
| 275 | 
            +
                        k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
         | 
| 276 | 
            +
                        cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
         | 
| 277 | 
            +
                        the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
         | 
| 278 | 
            +
                Returns:
         | 
| 279 | 
            +
                    `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
         | 
| 280 | 
            +
                """
         | 
| 281 | 
            +
                cos = cos[position_ids].unsqueeze(unsqueeze_dim)
         | 
| 282 | 
            +
                sin = sin[position_ids].unsqueeze(unsqueeze_dim)
         | 
| 283 | 
            +
                q_embed = (q * cos) + (rotate_half(q) * sin)
         | 
| 284 | 
            +
                k_embed = (k * cos) + (rotate_half(k) * sin)
         | 
| 285 | 
            +
                return q_embed, k_embed
         | 
| 286 | 
            +
             | 
| 287 | 
            +
             | 
| 288 | 
            +
            # Copied from transformers.models.llama.modeling_llama.repeat_kv
         | 
| 289 | 
            +
            def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
         | 
| 290 | 
            +
                """
         | 
| 291 | 
            +
                This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
         | 
| 292 | 
            +
                num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
         | 
| 293 | 
            +
                """
         | 
| 294 | 
            +
                batch, num_key_value_heads, slen, head_dim = hidden_states.shape
         | 
| 295 | 
            +
                if n_rep == 1:
         | 
| 296 | 
            +
                    return hidden_states
         | 
| 297 | 
            +
                hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
         | 
| 298 | 
            +
                return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
         | 
| 299 | 
            +
             | 
| 300 | 
            +
             | 
| 301 | 
            +
            # Copied from transformers.models.mistral.modeling_mistral.MistralAttention with Mistral->Arctic
         | 
| 302 | 
            +
            class ArcticAttention(nn.Module):
         | 
| 303 | 
            +
                """
         | 
| 304 | 
            +
                Multi-headed attention from 'Attention Is All You Need' paper. Modified to use sliding window attention: Longformer
         | 
| 305 | 
            +
                and "Generating Long Sequences with Sparse Transformers".
         | 
| 306 | 
            +
                """
         | 
| 307 | 
            +
             | 
| 308 | 
            +
                def __init__(self, config: ArcticConfig, layer_idx: Optional[int] = None,  **kwargs):
         | 
| 309 | 
            +
                    super().__init__()
         | 
| 310 | 
            +
                    self.config = config
         | 
| 311 | 
            +
                    self.layer_idx = layer_idx
         | 
| 312 | 
            +
                    if layer_idx is None:
         | 
| 313 | 
            +
                        logger.warning_once(
         | 
| 314 | 
            +
                            f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will "
         | 
| 315 | 
            +
                            "to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` "
         | 
| 316 | 
            +
                            "when creating this class."
         | 
| 317 | 
            +
                        )
         | 
| 318 | 
            +
             | 
| 319 | 
            +
                    self.hidden_size = config.hidden_size
         | 
| 320 | 
            +
                    self.num_heads = config.num_attention_heads
         | 
| 321 | 
            +
                    self.head_dim = self.hidden_size // self.num_heads
         | 
| 322 | 
            +
                    self.num_key_value_heads = config.num_key_value_heads
         | 
| 323 | 
            +
                    self.num_key_value_groups = self.num_heads // self.num_key_value_heads
         | 
| 324 | 
            +
                    self.max_position_embeddings = config.max_position_embeddings
         | 
| 325 | 
            +
                    self.rope_theta = config.rope_theta
         | 
| 326 | 
            +
                    self.is_causal = True
         | 
| 327 | 
            +
                    self.attention_dropout = config.attention_dropout
         | 
| 328 | 
            +
                    self.use_deepspeed_implementation = USE_DEEPSPEED_MOE_ARG in kwargs and kwargs[USE_DEEPSPEED_MOE_ARG]
         | 
| 329 | 
            +
                    if (self.head_dim * self.num_heads) != self.hidden_size:
         | 
| 330 | 
            +
                        raise ValueError(
         | 
| 331 | 
            +
                            f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
         | 
| 332 | 
            +
                            f" and `num_heads`: {self.num_heads})."
         | 
| 333 | 
            +
                        )
         | 
| 334 | 
            +
             | 
| 335 | 
            +
                    deepspeed_quantization = kwargs.get(DEEPSPEED_QUANTIZATION_CONFIG)
         | 
| 336 | 
            +
                    deepspeed_lora_config = kwargs.get(DEEPSPEED_LORA_CONFIG)
         | 
| 337 | 
            +
                    quantization_config = kwargs.get(QUANTIZATION_CONFIG, None)
         | 
| 338 | 
            +
             | 
| 339 | 
            +
                    self.q_proj = get_arctic_linear(self.hidden_size, self.num_heads * self.head_dim, bias=False,
         | 
| 340 | 
            +
                                                 use_deepspeed_implementation=self.use_deepspeed_implementation,
         | 
| 341 | 
            +
                                                 ds_optimized_lora_config=deepspeed_lora_config, 
         | 
| 342 | 
            +
                                                 ds_optimized_quantization_config=quantization_config, 
         | 
| 343 | 
            +
                                                 ds_optimized_base_weight_sharding=True,
         | 
| 344 | 
            +
                                                 dtype=torch.bfloat16)
         | 
| 345 | 
            +
                    self.k_proj = get_arctic_linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False,
         | 
| 346 | 
            +
                                                 use_deepspeed_implementation=self.use_deepspeed_implementation,                                     
         | 
| 347 | 
            +
                                                 ds_optimized_lora_config=deepspeed_lora_config, 
         | 
| 348 | 
            +
                                                 ds_optimized_quantization_config=quantization_config, 
         | 
| 349 | 
            +
                                                 ds_optimized_base_weight_sharding=True,
         | 
| 350 | 
            +
                                                 dtype=torch.bfloat16)
         | 
| 351 | 
            +
                    self.v_proj = get_arctic_linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False,
         | 
| 352 | 
            +
                                                 use_deepspeed_implementation=self.use_deepspeed_implementation,
         | 
| 353 | 
            +
                                                 ds_optimized_lora_config=deepspeed_lora_config, 
         | 
| 354 | 
            +
                                                 ds_optimized_quantization_config=quantization_config, 
         | 
| 355 | 
            +
                                                 ds_optimized_base_weight_sharding=True,
         | 
| 356 | 
            +
                                                 dtype=torch.bfloat16)
         | 
| 357 | 
            +
                    self.o_proj = get_arctic_linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False,
         | 
| 358 | 
            +
                                                 use_deepspeed_implementation=self.use_deepspeed_implementation,
         | 
| 359 | 
            +
                                                 ds_optimized_lora_config=deepspeed_lora_config, 
         | 
| 360 | 
            +
                                                 ds_optimized_quantization_config=quantization_config, 
         | 
| 361 | 
            +
                                                 ds_optimized_base_weight_sharding=True,
         | 
| 362 | 
            +
                                                 dtype=torch.bfloat16)
         | 
| 363 | 
            +
                    
         | 
| 364 | 
            +
                    self.rotary_emb = ArcticRotaryEmbedding(
         | 
| 365 | 
            +
                        self.head_dim,
         | 
| 366 | 
            +
                        max_position_embeddings=self.max_position_embeddings,
         | 
| 367 | 
            +
                        base=self.rope_theta,
         | 
| 368 | 
            +
                    )
         | 
| 369 | 
            +
             | 
| 370 | 
            +
                def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
         | 
| 371 | 
            +
                    return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
         | 
| 372 | 
            +
             | 
| 373 | 
            +
                def forward(
         | 
| 374 | 
            +
                    self,
         | 
| 375 | 
            +
                    hidden_states: torch.Tensor,
         | 
| 376 | 
            +
                    attention_mask: Optional[torch.Tensor] = None,
         | 
| 377 | 
            +
                    position_ids: Optional[torch.LongTensor] = None,
         | 
| 378 | 
            +
                    past_key_value: Optional[Cache] = None,
         | 
| 379 | 
            +
                    output_attentions: bool = False,
         | 
| 380 | 
            +
                    use_cache: bool = False,
         | 
| 381 | 
            +
                    **kwargs,
         | 
| 382 | 
            +
                ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
         | 
| 383 | 
            +
                    if "padding_mask" in kwargs:
         | 
| 384 | 
            +
                        warnings.warn(
         | 
| 385 | 
            +
                            "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
         | 
| 386 | 
            +
                        )
         | 
| 387 | 
            +
                    bsz, q_len, _ = hidden_states.size()
         | 
| 388 | 
            +
             | 
| 389 | 
            +
                    query_states = self.q_proj(hidden_states)
         | 
| 390 | 
            +
                    key_states = self.k_proj(hidden_states)
         | 
| 391 | 
            +
                    value_states = self.v_proj(hidden_states)
         | 
| 392 | 
            +
             | 
| 393 | 
            +
                    query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
         | 
| 394 | 
            +
                    key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
         | 
| 395 | 
            +
                    value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
         | 
| 396 | 
            +
             | 
| 397 | 
            +
                    kv_seq_len = key_states.shape[-2]
         | 
| 398 | 
            +
                    if past_key_value is not None:
         | 
| 399 | 
            +
                        if self.layer_idx is None:
         | 
| 400 | 
            +
                            raise ValueError(
         | 
| 401 | 
            +
                                f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
         | 
| 402 | 
            +
                                "for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
         | 
| 403 | 
            +
                                "with a layer index."
         | 
| 404 | 
            +
                            )
         | 
| 405 | 
            +
                        kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
         | 
| 406 | 
            +
                    cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
         | 
| 407 | 
            +
                    query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
         | 
| 408 | 
            +
             | 
| 409 | 
            +
                    if past_key_value is not None:
         | 
| 410 | 
            +
                        cache_kwargs = {"sin": sin, "cos": cos}  # Specific to RoPE models
         | 
| 411 | 
            +
                        key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
         | 
| 412 | 
            +
             | 
| 413 | 
            +
                    # repeat k/v heads if n_kv_heads < n_heads
         | 
| 414 | 
            +
                    key_states = repeat_kv(key_states, self.num_key_value_groups)
         | 
| 415 | 
            +
                    value_states = repeat_kv(value_states, self.num_key_value_groups)
         | 
| 416 | 
            +
             | 
| 417 | 
            +
                    attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
         | 
| 418 | 
            +
             | 
| 419 | 
            +
                    if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
         | 
| 420 | 
            +
                        raise ValueError(
         | 
| 421 | 
            +
                            f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
         | 
| 422 | 
            +
                            f" {attn_weights.size()}"
         | 
| 423 | 
            +
                        )
         | 
| 424 | 
            +
             | 
| 425 | 
            +
                    if attention_mask is not None:
         | 
| 426 | 
            +
                        if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
         | 
| 427 | 
            +
                            raise ValueError(
         | 
| 428 | 
            +
                                f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
         | 
| 429 | 
            +
                            )
         | 
| 430 | 
            +
             | 
| 431 | 
            +
                        attn_weights = attn_weights + attention_mask
         | 
| 432 | 
            +
             | 
| 433 | 
            +
                    # upcast attention to fp32
         | 
| 434 | 
            +
                    attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
         | 
| 435 | 
            +
                    attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
         | 
| 436 | 
            +
                    attn_output = torch.matmul(attn_weights, value_states)
         | 
| 437 | 
            +
             | 
| 438 | 
            +
                    if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
         | 
| 439 | 
            +
                        raise ValueError(
         | 
| 440 | 
            +
                            f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
         | 
| 441 | 
            +
                            f" {attn_output.size()}"
         | 
| 442 | 
            +
                        )
         | 
| 443 | 
            +
             | 
| 444 | 
            +
                    attn_output = attn_output.transpose(1, 2).contiguous()
         | 
| 445 | 
            +
                    attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
         | 
| 446 | 
            +
             | 
| 447 | 
            +
                    attn_output = self.o_proj(attn_output)
         | 
| 448 | 
            +
             | 
| 449 | 
            +
                    if not output_attentions:
         | 
| 450 | 
            +
                        attn_weights = None
         | 
| 451 | 
            +
             | 
| 452 | 
            +
                    return attn_output, attn_weights, past_key_value
         | 
| 453 | 
            +
             | 
| 454 | 
            +
             | 
| 455 | 
            +
            # Copied from transformers.models.mistral.modeling_mistral.MistralFlashAttention2 with Mistral->Arctic
         | 
| 456 | 
            +
            class ArcticFlashAttention2(ArcticAttention):
         | 
| 457 | 
            +
                """
         | 
| 458 | 
            +
                Arctic flash attention module. This module inherits from `ArcticAttention` as the weights of the module stays
         | 
| 459 | 
            +
                untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
         | 
| 460 | 
            +
                flash attention and deal with padding tokens in case the input contains any of them.
         | 
| 461 | 
            +
                """
         | 
| 462 | 
            +
             | 
| 463 | 
            +
                # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__
         | 
| 464 | 
            +
                def __init__(self, *args, **kwargs):
         | 
| 465 | 
            +
                    super().__init__(*args, **kwargs)
         | 
| 466 | 
            +
             | 
| 467 | 
            +
                    # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
         | 
| 468 | 
            +
                    # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
         | 
| 469 | 
            +
                    # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
         | 
| 470 | 
            +
                    self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
         | 
| 471 | 
            +
             | 
| 472 | 
            +
                def forward(
         | 
| 473 | 
            +
                    self,
         | 
| 474 | 
            +
                    hidden_states: torch.Tensor,
         | 
| 475 | 
            +
                    attention_mask: Optional[torch.Tensor] = None,
         | 
| 476 | 
            +
                    position_ids: Optional[torch.LongTensor] = None,
         | 
| 477 | 
            +
                    past_key_value: Optional[Cache] = None,
         | 
| 478 | 
            +
                    output_attentions: bool = False,
         | 
| 479 | 
            +
                    use_cache: bool = False,
         | 
| 480 | 
            +
                    **kwargs,
         | 
| 481 | 
            +
                ):
         | 
| 482 | 
            +
                    if "padding_mask" in kwargs:
         | 
| 483 | 
            +
                        warnings.warn(
         | 
| 484 | 
            +
                            "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
         | 
| 485 | 
            +
                        )
         | 
| 486 | 
            +
             | 
| 487 | 
            +
                        # overwrite attention_mask with padding_mask
         | 
| 488 | 
            +
                        attention_mask = kwargs.pop("padding_mask")
         | 
| 489 | 
            +
                    bsz, q_len, _ = hidden_states.size()
         | 
| 490 | 
            +
             | 
| 491 | 
            +
                    query_states = self.q_proj(hidden_states)
         | 
| 492 | 
            +
                    key_states = self.k_proj(hidden_states)
         | 
| 493 | 
            +
                    value_states = self.v_proj(hidden_states)
         | 
| 494 | 
            +
             | 
| 495 | 
            +
                    query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
         | 
| 496 | 
            +
                    key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
         | 
| 497 | 
            +
                    value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
         | 
| 498 | 
            +
             | 
| 499 | 
            +
                    kv_seq_len = key_states.shape[-2]
         | 
| 500 | 
            +
                    if past_key_value is not None:
         | 
| 501 | 
            +
                        if self.layer_idx is None:
         | 
| 502 | 
            +
                            raise ValueError(
         | 
| 503 | 
            +
                                f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
         | 
| 504 | 
            +
                                "for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
         | 
| 505 | 
            +
                                "with a layer index."
         | 
| 506 | 
            +
                            )
         | 
| 507 | 
            +
                        kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
         | 
| 508 | 
            +
             | 
| 509 | 
            +
                    # Because the input can be padded, the absolute sequence length depends on the max position id.
         | 
| 510 | 
            +
                    rotary_seq_len = max(kv_seq_len, position_ids[:, -1].max().item()) + 1
         | 
| 511 | 
            +
                    cos, sin = self.rotary_emb(value_states, seq_len=rotary_seq_len)
         | 
| 512 | 
            +
             | 
| 513 | 
            +
                    query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
         | 
| 514 | 
            +
             | 
| 515 | 
            +
                    use_sliding_windows = (
         | 
| 516 | 
            +
                        _flash_supports_window_size
         | 
| 517 | 
            +
                        and getattr(self.config, "sliding_window", None) is not None
         | 
| 518 | 
            +
                        and kv_seq_len > self.config.sliding_window
         | 
| 519 | 
            +
                    )
         | 
| 520 | 
            +
             | 
| 521 | 
            +
                    if not _flash_supports_window_size:
         | 
| 522 | 
            +
                        logger.warning_once(
         | 
| 523 | 
            +
                            "The current flash attention version does not support sliding window attention, for a more memory efficient implementation"
         | 
| 524 | 
            +
                            " make sure to upgrade flash-attn library."
         | 
| 525 | 
            +
                        )
         | 
| 526 | 
            +
             | 
| 527 | 
            +
                    if past_key_value is not None:
         | 
| 528 | 
            +
                        # Activate slicing cache only if the config has a value `sliding_windows` attribute
         | 
| 529 | 
            +
                        cache_has_contents = past_key_value.get_seq_length(self.layer_idx) > 0
         | 
| 530 | 
            +
                        if (
         | 
| 531 | 
            +
                            getattr(self.config, "sliding_window", None) is not None
         | 
| 532 | 
            +
                            and kv_seq_len > self.config.sliding_window
         | 
| 533 | 
            +
                            and cache_has_contents
         | 
| 534 | 
            +
                        ):
         | 
| 535 | 
            +
                            slicing_tokens = 1 - self.config.sliding_window
         | 
| 536 | 
            +
             | 
| 537 | 
            +
                            past_key = past_key_value[self.layer_idx][0]
         | 
| 538 | 
            +
                            past_value = past_key_value[self.layer_idx][1]
         | 
| 539 | 
            +
             | 
| 540 | 
            +
                            past_key = past_key[:, :, slicing_tokens:, :].contiguous()
         | 
| 541 | 
            +
                            past_value = past_value[:, :, slicing_tokens:, :].contiguous()
         | 
| 542 | 
            +
             | 
| 543 | 
            +
                            if past_key.shape[-2] != self.config.sliding_window - 1:
         | 
| 544 | 
            +
                                raise ValueError(
         | 
| 545 | 
            +
                                    f"past key must have a shape of (`batch_size, num_heads, self.config.sliding_window-1, head_dim`), got"
         | 
| 546 | 
            +
                                    f" {past_key.shape}"
         | 
| 547 | 
            +
                                )
         | 
| 548 | 
            +
             | 
| 549 | 
            +
                            if attention_mask is not None:
         | 
| 550 | 
            +
                                attention_mask = attention_mask[:, slicing_tokens:]
         | 
| 551 | 
            +
                                attention_mask = torch.cat([attention_mask, torch.ones_like(attention_mask[:, -1:])], dim=-1)
         | 
| 552 | 
            +
             | 
| 553 | 
            +
                        cache_kwargs = {"sin": sin, "cos": cos}  # Specific to RoPE models
         | 
| 554 | 
            +
                        key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
         | 
| 555 | 
            +
             | 
| 556 | 
            +
                    # repeat k/v heads if n_kv_heads < n_heads
         | 
| 557 | 
            +
                    key_states = repeat_kv(key_states, self.num_key_value_groups)
         | 
| 558 | 
            +
                    value_states = repeat_kv(value_states, self.num_key_value_groups)
         | 
| 559 | 
            +
                    dropout_rate = 0.0 if not self.training else self.attention_dropout
         | 
| 560 | 
            +
             | 
| 561 | 
            +
                    # In PEFT, usually we cast the layer norms in float32 for training stability reasons
         | 
| 562 | 
            +
                    # therefore the input hidden states gets silently casted in float32. Hence, we need
         | 
| 563 | 
            +
                    # cast them back in float16 just to be sure everything works as expected.
         | 
| 564 | 
            +
                    input_dtype = query_states.dtype
         | 
| 565 | 
            +
                    if input_dtype == torch.float32:
         | 
| 566 | 
            +
                        if torch.is_autocast_enabled():
         | 
| 567 | 
            +
                            target_dtype = torch.get_autocast_gpu_dtype()
         | 
| 568 | 
            +
                        # Handle the case where the model is quantized
         | 
| 569 | 
            +
                        elif hasattr(self.config, "_pre_quantization_dtype"):
         | 
| 570 | 
            +
                            target_dtype = self.config._pre_quantization_dtype
         | 
| 571 | 
            +
                        else:
         | 
| 572 | 
            +
                            target_dtype = self.q_proj.weight.dtype
         | 
| 573 | 
            +
             | 
| 574 | 
            +
                        logger.warning_once(
         | 
| 575 | 
            +
                            f"The input hidden states seems to be silently casted in float32, this might be related to"
         | 
| 576 | 
            +
                            f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
         | 
| 577 | 
            +
                            f" {target_dtype}."
         | 
| 578 | 
            +
                        )
         | 
| 579 | 
            +
             | 
| 580 | 
            +
                        query_states = query_states.to(target_dtype)
         | 
| 581 | 
            +
                        key_states = key_states.to(target_dtype)
         | 
| 582 | 
            +
                        value_states = value_states.to(target_dtype)
         | 
| 583 | 
            +
             | 
| 584 | 
            +
                    # Reashape to the expected shape for Flash Attention
         | 
| 585 | 
            +
                    query_states = query_states.transpose(1, 2)
         | 
| 586 | 
            +
                    key_states = key_states.transpose(1, 2)
         | 
| 587 | 
            +
                    value_states = value_states.transpose(1, 2)
         | 
| 588 | 
            +
             | 
| 589 | 
            +
                    attn_output = self._flash_attention_forward(
         | 
| 590 | 
            +
                        query_states,
         | 
| 591 | 
            +
                        key_states,
         | 
| 592 | 
            +
                        value_states,
         | 
| 593 | 
            +
                        attention_mask,
         | 
| 594 | 
            +
                        q_len,
         | 
| 595 | 
            +
                        dropout=dropout_rate,
         | 
| 596 | 
            +
                        use_sliding_windows=use_sliding_windows,
         | 
| 597 | 
            +
                    )
         | 
| 598 | 
            +
             | 
| 599 | 
            +
                    attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
         | 
| 600 | 
            +
                    attn_output = self.o_proj(attn_output)
         | 
| 601 | 
            +
             | 
| 602 | 
            +
                    if not output_attentions:
         | 
| 603 | 
            +
                        attn_weights = None
         | 
| 604 | 
            +
             | 
| 605 | 
            +
                    return attn_output, attn_weights, past_key_value
         | 
| 606 | 
            +
             | 
| 607 | 
            +
                def _flash_attention_forward(
         | 
| 608 | 
            +
                    self,
         | 
| 609 | 
            +
                    query_states,
         | 
| 610 | 
            +
                    key_states,
         | 
| 611 | 
            +
                    value_states,
         | 
| 612 | 
            +
                    attention_mask,
         | 
| 613 | 
            +
                    query_length,
         | 
| 614 | 
            +
                    dropout=0.0,
         | 
| 615 | 
            +
                    softmax_scale=None,
         | 
| 616 | 
            +
                    use_sliding_windows=False,
         | 
| 617 | 
            +
                ):
         | 
| 618 | 
            +
                    """
         | 
| 619 | 
            +
                    Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
         | 
| 620 | 
            +
                    first unpad the input, then computes the attention scores and pad the final attention scores.
         | 
| 621 | 
            +
             | 
| 622 | 
            +
                    Args:
         | 
| 623 | 
            +
                        query_states (`torch.Tensor`):
         | 
| 624 | 
            +
                            Input query states to be passed to Flash Attention API
         | 
| 625 | 
            +
                        key_states (`torch.Tensor`):
         | 
| 626 | 
            +
                            Input key states to be passed to Flash Attention API
         | 
| 627 | 
            +
                        value_states (`torch.Tensor`):
         | 
| 628 | 
            +
                            Input value states to be passed to Flash Attention API
         | 
| 629 | 
            +
                        attention_mask (`torch.Tensor`):
         | 
| 630 | 
            +
                            The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
         | 
| 631 | 
            +
                            position of padding tokens and 1 for the position of non-padding tokens.
         | 
| 632 | 
            +
                        dropout (`int`, *optional*):
         | 
| 633 | 
            +
                            Attention dropout
         | 
| 634 | 
            +
                        softmax_scale (`float`, *optional*):
         | 
| 635 | 
            +
                            The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
         | 
| 636 | 
            +
                        use_sliding_windows (`bool`, *optional*):
         | 
| 637 | 
            +
                            Whether to activate sliding window attention.
         | 
| 638 | 
            +
                    """
         | 
| 639 | 
            +
                    if not self._flash_attn_uses_top_left_mask:
         | 
| 640 | 
            +
                        causal = self.is_causal
         | 
| 641 | 
            +
                    else:
         | 
| 642 | 
            +
                        # TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__.
         | 
| 643 | 
            +
                        causal = self.is_causal and query_length != 1
         | 
| 644 | 
            +
             | 
| 645 | 
            +
                    # Contains at least one padding token in the sequence
         | 
| 646 | 
            +
                    if attention_mask is not None:
         | 
| 647 | 
            +
                        batch_size = query_states.shape[0]
         | 
| 648 | 
            +
                        query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
         | 
| 649 | 
            +
                            query_states, key_states, value_states, attention_mask, query_length
         | 
| 650 | 
            +
                        )
         | 
| 651 | 
            +
             | 
| 652 | 
            +
                        cu_seqlens_q, cu_seqlens_k = cu_seq_lens
         | 
| 653 | 
            +
                        max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
         | 
| 654 | 
            +
             | 
| 655 | 
            +
                        if not use_sliding_windows:
         | 
| 656 | 
            +
                            attn_output_unpad = flash_attn_varlen_func(
         | 
| 657 | 
            +
                                query_states,
         | 
| 658 | 
            +
                                key_states,
         | 
| 659 | 
            +
                                value_states,
         | 
| 660 | 
            +
                                cu_seqlens_q=cu_seqlens_q,
         | 
| 661 | 
            +
                                cu_seqlens_k=cu_seqlens_k,
         | 
| 662 | 
            +
                                max_seqlen_q=max_seqlen_in_batch_q,
         | 
| 663 | 
            +
                                max_seqlen_k=max_seqlen_in_batch_k,
         | 
| 664 | 
            +
                                dropout_p=dropout,
         | 
| 665 | 
            +
                                softmax_scale=softmax_scale,
         | 
| 666 | 
            +
                                causal=causal,
         | 
| 667 | 
            +
                            )
         | 
| 668 | 
            +
                        else:
         | 
| 669 | 
            +
                            attn_output_unpad = flash_attn_varlen_func(
         | 
| 670 | 
            +
                                query_states,
         | 
| 671 | 
            +
                                key_states,
         | 
| 672 | 
            +
                                value_states,
         | 
| 673 | 
            +
                                cu_seqlens_q=cu_seqlens_q,
         | 
| 674 | 
            +
                                cu_seqlens_k=cu_seqlens_k,
         | 
| 675 | 
            +
                                max_seqlen_q=max_seqlen_in_batch_q,
         | 
| 676 | 
            +
                                max_seqlen_k=max_seqlen_in_batch_k,
         | 
| 677 | 
            +
                                dropout_p=dropout,
         | 
| 678 | 
            +
                                softmax_scale=softmax_scale,
         | 
| 679 | 
            +
                                causal=causal,
         | 
| 680 | 
            +
                                window_size=(self.config.sliding_window, self.config.sliding_window),
         | 
| 681 | 
            +
                            )
         | 
| 682 | 
            +
             | 
| 683 | 
            +
                        attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
         | 
| 684 | 
            +
                    else:
         | 
| 685 | 
            +
                        if not use_sliding_windows:
         | 
| 686 | 
            +
                            attn_output = flash_attn_func(
         | 
| 687 | 
            +
                                query_states,
         | 
| 688 | 
            +
                                key_states,
         | 
| 689 | 
            +
                                value_states,
         | 
| 690 | 
            +
                                dropout,
         | 
| 691 | 
            +
                                softmax_scale=softmax_scale,
         | 
| 692 | 
            +
                                causal=causal,
         | 
| 693 | 
            +
                            )
         | 
| 694 | 
            +
                        else:
         | 
| 695 | 
            +
                            attn_output = flash_attn_func(
         | 
| 696 | 
            +
                                query_states,
         | 
| 697 | 
            +
                                key_states,
         | 
| 698 | 
            +
                                value_states,
         | 
| 699 | 
            +
                                dropout,
         | 
| 700 | 
            +
                                softmax_scale=softmax_scale,
         | 
| 701 | 
            +
                                causal=causal,
         | 
| 702 | 
            +
                                window_size=(self.config.sliding_window, self.config.sliding_window),
         | 
| 703 | 
            +
                            )
         | 
| 704 | 
            +
             | 
| 705 | 
            +
                    return attn_output
         | 
| 706 | 
            +
             | 
| 707 | 
            +
                def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
         | 
| 708 | 
            +
                    batch_size, kv_seq_len, num_heads, head_dim = key_layer.shape
         | 
| 709 | 
            +
             | 
| 710 | 
            +
                    # On the first iteration we need to properly re-create the padding mask
         | 
| 711 | 
            +
                    # by slicing it on the proper place
         | 
| 712 | 
            +
                    if kv_seq_len != attention_mask.shape[-1]:
         | 
| 713 | 
            +
                        attention_mask_num_tokens = attention_mask.shape[-1]
         | 
| 714 | 
            +
                        attention_mask = attention_mask[:, attention_mask_num_tokens - kv_seq_len :]
         | 
| 715 | 
            +
             | 
| 716 | 
            +
                    indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
         | 
| 717 | 
            +
             | 
| 718 | 
            +
                    key_layer = index_first_axis(key_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k)
         | 
| 719 | 
            +
                    value_layer = index_first_axis(value_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k)
         | 
| 720 | 
            +
             | 
| 721 | 
            +
                    if query_length == kv_seq_len:
         | 
| 722 | 
            +
                        query_layer = index_first_axis(
         | 
| 723 | 
            +
                            query_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k
         | 
| 724 | 
            +
                        )
         | 
| 725 | 
            +
                        cu_seqlens_q = cu_seqlens_k
         | 
| 726 | 
            +
                        max_seqlen_in_batch_q = max_seqlen_in_batch_k
         | 
| 727 | 
            +
                        indices_q = indices_k
         | 
| 728 | 
            +
                    elif query_length == 1:
         | 
| 729 | 
            +
                        max_seqlen_in_batch_q = 1
         | 
| 730 | 
            +
                        cu_seqlens_q = torch.arange(
         | 
| 731 | 
            +
                            batch_size + 1, dtype=torch.int32, device=query_layer.device
         | 
| 732 | 
            +
                        )  # There is a memcpy here, that is very bad.
         | 
| 733 | 
            +
                        indices_q = cu_seqlens_q[:-1]
         | 
| 734 | 
            +
                        query_layer = query_layer.squeeze(1)
         | 
| 735 | 
            +
                    else:
         | 
| 736 | 
            +
                        # The -q_len: slice assumes left padding.
         | 
| 737 | 
            +
                        attention_mask = attention_mask[:, -query_length:]
         | 
| 738 | 
            +
                        query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
         | 
| 739 | 
            +
             | 
| 740 | 
            +
                    return (
         | 
| 741 | 
            +
                        query_layer,
         | 
| 742 | 
            +
                        key_layer,
         | 
| 743 | 
            +
                        value_layer,
         | 
| 744 | 
            +
                        indices_q,
         | 
| 745 | 
            +
                        (cu_seqlens_q, cu_seqlens_k),
         | 
| 746 | 
            +
                        (max_seqlen_in_batch_q, max_seqlen_in_batch_k),
         | 
| 747 | 
            +
                    )
         | 
| 748 | 
            +
             | 
| 749 | 
            +
            def get_arctic_linear(input_dim, 
         | 
| 750 | 
            +
                               output_dim, 
         | 
| 751 | 
            +
                               bias=False,
         | 
| 752 | 
            +
                               use_deepspeed_implementation=False,
         | 
| 753 | 
            +
                               ds_optimized_lora_config=None, 
         | 
| 754 | 
            +
                               ds_optimized_quantization_config=None, 
         | 
| 755 | 
            +
                               ds_optimized_base_weight_sharding=False,
         | 
| 756 | 
            +
                               dtype=torch.bfloat16):
         | 
| 757 | 
            +
                """Can return deepspeed optimized linear if available.
         | 
| 758 | 
            +
                Args:
         | 
| 759 | 
            +
                    input_dim, output_dim, bias, dtype: self explanatory (same as from nn.Linear)
         | 
| 760 | 
            +
                    ds_optimized_lora_config: config of type ds_linear.LoRAConfig that contains lora specific parameter if we want to add lora to this layer.
         | 
| 761 | 
            +
                    ds_optimized_quantization_config: config of type ds_linear.QuantizationConfig.
         | 
| 762 | 
            +
                    ds_optimized_base_weight_sharding: bool. If true, the base weight for lora (provided ds_optimized_lora_config is not None) will be sharded across all available gpus
         | 
| 763 | 
            +
                    in a tensor parallel way.
         | 
| 764 | 
            +
                """
         | 
| 765 | 
            +
                if is_deepspeed_available():
         | 
| 766 | 
            +
                    if ds_optimized_lora_config is not None:
         | 
| 767 | 
            +
                        ds_optimized_lora_config: ds_linear.LoRAConfig = copy.deepcopy(ds_optimized_lora_config)
         | 
| 768 | 
            +
                        ds_optimized_lora_config.base_weight_sharding = torch.distributed.get_world_size() if ds_optimized_base_weight_sharding else 1
         | 
| 769 | 
            +
                    return ds_linear.OptimizedLinear(input_dim, output_dim, bias, ds_optimized_lora_config, ds_optimized_quantization_config, dtype=dtype)
         | 
| 770 | 
            +
                return nn.Linear(input_dim, output_dim, bias=bias, dtype=dtype)
         | 
| 771 | 
            +
             | 
| 772 | 
            +
             | 
| 773 | 
            +
            # Copied from transformers.models.llama.modeling_llama.LlamaSdpaAttention with Llama->Arctic
         | 
| 774 | 
            +
            class ArcticSdpaAttention(ArcticAttention):
         | 
| 775 | 
            +
                """
         | 
| 776 | 
            +
                Arctic attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
         | 
| 777 | 
            +
                `ArcticAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
         | 
| 778 | 
            +
                SDPA API.
         | 
| 779 | 
            +
                """
         | 
| 780 | 
            +
             | 
| 781 | 
            +
                # Adapted from ArcticAttention.forward
         | 
| 782 | 
            +
                def forward(
         | 
| 783 | 
            +
                    self,
         | 
| 784 | 
            +
                    hidden_states: torch.Tensor,
         | 
| 785 | 
            +
                    attention_mask: Optional[torch.Tensor] = None,
         | 
| 786 | 
            +
                    position_ids: Optional[torch.LongTensor] = None,
         | 
| 787 | 
            +
                    past_key_value: Optional[Cache] = None,
         | 
| 788 | 
            +
                    output_attentions: bool = False,
         | 
| 789 | 
            +
                    use_cache: bool = False,
         | 
| 790 | 
            +
                ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
         | 
| 791 | 
            +
                    if output_attentions:
         | 
| 792 | 
            +
                        # TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
         | 
| 793 | 
            +
                        logger.warning_once(
         | 
| 794 | 
            +
                            "ArcticModel is using ArcticSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
         | 
| 795 | 
            +
                            'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
         | 
| 796 | 
            +
                        )
         | 
| 797 | 
            +
                        return super().forward(
         | 
| 798 | 
            +
                            hidden_states=hidden_states,
         | 
| 799 | 
            +
                            attention_mask=attention_mask,
         | 
| 800 | 
            +
                            position_ids=position_ids,
         | 
| 801 | 
            +
                            past_key_value=past_key_value,
         | 
| 802 | 
            +
                            output_attentions=output_attentions,
         | 
| 803 | 
            +
                            use_cache=use_cache,
         | 
| 804 | 
            +
                        )
         | 
| 805 | 
            +
             | 
| 806 | 
            +
                    bsz, q_len, _ = hidden_states.size()
         | 
| 807 | 
            +
             | 
| 808 | 
            +
                    query_states = self.q_proj(hidden_states)
         | 
| 809 | 
            +
                    key_states = self.k_proj(hidden_states)
         | 
| 810 | 
            +
                    value_states = self.v_proj(hidden_states)
         | 
| 811 | 
            +
             | 
| 812 | 
            +
                    query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
         | 
| 813 | 
            +
                    key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
         | 
| 814 | 
            +
                    value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
         | 
| 815 | 
            +
             | 
| 816 | 
            +
                    kv_seq_len = key_states.shape[-2]
         | 
| 817 | 
            +
                    if past_key_value is not None:
         | 
| 818 | 
            +
                        kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
         | 
| 819 | 
            +
                    cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
         | 
| 820 | 
            +
             | 
| 821 | 
            +
                    query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
         | 
| 822 | 
            +
             | 
| 823 | 
            +
                    if past_key_value is not None:
         | 
| 824 | 
            +
                        cache_kwargs = {"sin": sin, "cos": cos}  # Specific to RoPE models
         | 
| 825 | 
            +
                        key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
         | 
| 826 | 
            +
             | 
| 827 | 
            +
                    key_states = repeat_kv(key_states, self.num_key_value_groups)
         | 
| 828 | 
            +
                    value_states = repeat_kv(value_states, self.num_key_value_groups)
         | 
| 829 | 
            +
             | 
| 830 | 
            +
                    if attention_mask is not None:
         | 
| 831 | 
            +
                        if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
         | 
| 832 | 
            +
                            raise ValueError(
         | 
| 833 | 
            +
                                f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
         | 
| 834 | 
            +
                            )
         | 
| 835 | 
            +
             | 
| 836 | 
            +
                    # SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
         | 
| 837 | 
            +
                    # Reference: https://github.com/pytorch/pytorch/issues/112577.
         | 
| 838 | 
            +
                    if query_states.device.type == "cuda" and attention_mask is not None:
         | 
| 839 | 
            +
                        query_states = query_states.contiguous()
         | 
| 840 | 
            +
                        key_states = key_states.contiguous()
         | 
| 841 | 
            +
                        value_states = value_states.contiguous()
         | 
| 842 | 
            +
             | 
| 843 | 
            +
                    attn_output = torch.nn.functional.scaled_dot_product_attention(
         | 
| 844 | 
            +
                        query_states,
         | 
| 845 | 
            +
                        key_states,
         | 
| 846 | 
            +
                        value_states,
         | 
| 847 | 
            +
                        attn_mask=attention_mask,
         | 
| 848 | 
            +
                        dropout_p=self.attention_dropout if self.training else 0.0,
         | 
| 849 | 
            +
                        # The q_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case q_len == 1.
         | 
| 850 | 
            +
                        is_causal=self.is_causal and attention_mask is None and q_len > 1,
         | 
| 851 | 
            +
                    )
         | 
| 852 | 
            +
             | 
| 853 | 
            +
                    attn_output = attn_output.transpose(1, 2).contiguous()
         | 
| 854 | 
            +
                    attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
         | 
| 855 | 
            +
             | 
| 856 | 
            +
                    attn_output = self.o_proj(attn_output)
         | 
| 857 | 
            +
             | 
| 858 | 
            +
                    return attn_output, None, past_key_value
         | 
| 859 | 
            +
             | 
| 860 | 
            +
             | 
| 861 | 
            +
            MIXTRAL_ATTENTION_CLASSES = {
         | 
| 862 | 
            +
                "eager": ArcticAttention,
         | 
| 863 | 
            +
                "flash_attention_2": ArcticFlashAttention2,
         | 
| 864 | 
            +
                "sdpa": ArcticSdpaAttention,
         | 
| 865 | 
            +
            }
         | 
| 866 | 
            +
             | 
| 867 | 
            +
             | 
| 868 | 
            +
            class ArcticMLP(nn.Module):
         | 
| 869 | 
            +
                def __init__(self, config: ArcticConfig, 
         | 
| 870 | 
            +
                             use_deepspeed_implementation=False,
         | 
| 871 | 
            +
                             ds_optimized_lora_config=None,
         | 
| 872 | 
            +
                             ds_optimized_quantization_config=None,
         | 
| 873 | 
            +
                             shard_base_weights_if_doing_lora=False, 
         | 
| 874 | 
            +
                             is_residual_mlp=False):
         | 
| 875 | 
            +
                    """MLP class for Arctic supporting vanilla linear layers as well as some deepspeed optimizations.
         | 
| 876 | 
            +
             | 
| 877 | 
            +
                    ds_optimized_lora_config: config of type ds_linear.LoRAConfig that contains lora specific parameter if we want to add lora to this layer.
         | 
| 878 | 
            +
                    ds_optimized_quantization_config: config of type ds_linear.QuantizationConfig.
         | 
| 879 | 
            +
                    ds_optimized_base_weight_sharding: bool. If true, the base weight for lora (provided ds_optimized_lora_config is not None) will be sharded across all available gpus
         | 
| 880 | 
            +
                    in a tensor parallel way.
         | 
| 881 | 
            +
                    is_residual_mlp: bool. If true, this is MLP inside arctic residual layer which has ffn_dim the same as full intermediate_size.
         | 
| 882 | 
            +
                    """        
         | 
| 883 | 
            +
                    super(ArcticMLP, self).__init__()
         | 
| 884 | 
            +
                    self.hidden_dim = config.hidden_size
         | 
| 885 | 
            +
                    self.ffn_dim = config.intermediate_size if not is_residual_mlp else self.hidden_dim  
         | 
| 886 | 
            +
                    self.w1 = get_arctic_linear(self.hidden_dim, self.ffn_dim, False,
         | 
| 887 | 
            +
                                             use_deepspeed_implementation=use_deepspeed_implementation,
         | 
| 888 | 
            +
                                             ds_optimized_lora_config=ds_optimized_lora_config, 
         | 
| 889 | 
            +
                                             ds_optimized_quantization_config=ds_optimized_quantization_config, 
         | 
| 890 | 
            +
                                             ds_optimized_base_weight_sharding=shard_base_weights_if_doing_lora,
         | 
| 891 | 
            +
                                             dtype=torch.bfloat16)
         | 
| 892 | 
            +
                    self.w2 = get_arctic_linear(self.ffn_dim, self.hidden_dim, False,
         | 
| 893 | 
            +
                                             use_deepspeed_implementation=use_deepspeed_implementation,                                 
         | 
| 894 | 
            +
                                             ds_optimized_lora_config=ds_optimized_lora_config, 
         | 
| 895 | 
            +
                                             ds_optimized_quantization_config=ds_optimized_quantization_config, 
         | 
| 896 | 
            +
                                             ds_optimized_base_weight_sharding=shard_base_weights_if_doing_lora,
         | 
| 897 | 
            +
                                             dtype=torch.bfloat16)
         | 
| 898 | 
            +
                    self.w3 = get_arctic_linear(self.hidden_dim, self.ffn_dim, False,
         | 
| 899 | 
            +
                                             use_deepspeed_implementation=use_deepspeed_implementation,                                 
         | 
| 900 | 
            +
                                             ds_optimized_lora_config=ds_optimized_lora_config, 
         | 
| 901 | 
            +
                                             ds_optimized_quantization_config=ds_optimized_quantization_config, 
         | 
| 902 | 
            +
                                             ds_optimized_base_weight_sharding=shard_base_weights_if_doing_lora,
         | 
| 903 | 
            +
                                             dtype=torch.bfloat16)
         | 
| 904 | 
            +
                    self.act_fn = ACT2FN[config.hidden_act]
         | 
| 905 | 
            +
             | 
| 906 | 
            +
                def forward(self, hidden_states):
         | 
| 907 | 
            +
                    current_hidden_states = self.act_fn(self.w1(hidden_states)) * self.w3(hidden_states)
         | 
| 908 | 
            +
                    current_hidden_states = self.w2(current_hidden_states)
         | 
| 909 | 
            +
                    return current_hidden_states
         | 
| 910 | 
            +
             | 
| 911 | 
            +
             | 
| 912 | 
            +
            class ArcticMoE(nn.Module):
         | 
| 913 | 
            +
                def __init__(self, config: ArcticConfig, layer_id: int, **kwargs):
         | 
| 914 | 
            +
                    super(ArcticMoE, self).__init__()
         | 
| 915 | 
            +
             | 
| 916 | 
            +
                    self.hidden_dim = config.hidden_size
         | 
| 917 | 
            +
                    self.num_experts = config.num_local_experts
         | 
| 918 | 
            +
                    self.layer_id = layer_id  
         | 
| 919 | 
            +
                    self.top_k = config.num_experts_per_tok
         | 
| 920 | 
            +
                    self.is_moe_layer = (layer_id+1) % config.moe_layer_frequency == 0
         | 
| 921 | 
            +
             | 
| 922 | 
            +
                    self.use_deepspeed_implementation = USE_DEEPSPEED_MOE_ARG in kwargs and kwargs[USE_DEEPSPEED_MOE_ARG]
         | 
| 923 | 
            +
                    if self.use_deepspeed_implementation and MoE is None:
         | 
| 924 | 
            +
                        raise ValueError("Deepspeed is not installed")
         | 
| 925 | 
            +
                    quantization_config = kwargs.get(QUANTIZATION_CONFIG, None)
         | 
| 926 | 
            +
                    deepspeed_lora = kwargs.get(DEEPSPEED_LORA_CONFIG)
         | 
| 927 | 
            +
                    if not self.is_moe_layer: # dense, not MoE
         | 
| 928 | 
            +
                        self.mlp = ArcticMLP(config,
         | 
| 929 | 
            +
                                          use_deepspeed_implementation=self.use_deepspeed_implementation,
         | 
| 930 | 
            +
                                          ds_optimized_quantization_config=quantization_config,
         | 
| 931 | 
            +
                                          ds_optimized_lora_config=deepspeed_lora,
         | 
| 932 | 
            +
                                          shard_base_weights_if_doing_lora=True)
         | 
| 933 | 
            +
                    else:
         | 
| 934 | 
            +
                        if self.use_deepspeed_implementation: # DeepSpeed's MoE         
         | 
| 935 | 
            +
                            moe_expert_parallel_size = kwargs.get(MOE_EXPERT_PARALLEL_SIZE_ARG, 1)
         | 
| 936 | 
            +
                            self.mlp = MoE(self.hidden_dim,
         | 
| 937 | 
            +
                                            # base weight sharding false for all deepspeed moe calls because it is already sharded
         | 
| 938 | 
            +
                                            ArcticMLP(config, 
         | 
| 939 | 
            +
                                                   use_deepspeed_implementation=True,
         | 
| 940 | 
            +
                                                   ds_optimized_quantization_config=quantization_config,
         | 
| 941 | 
            +
                                                   ds_optimized_lora_config=deepspeed_lora,
         | 
| 942 | 
            +
                                                   shard_base_weights_if_doing_lora=False),
         | 
| 943 | 
            +
                                            num_experts=config.num_local_experts,
         | 
| 944 | 
            +
                                            ep_size=moe_expert_parallel_size,
         | 
| 945 | 
            +
                                            k=config.num_experts_per_tok,
         | 
| 946 | 
            +
                                            use_residual=False,
         | 
| 947 | 
            +
                                            capacity_factor=config.moe_train_capacity_factor,
         | 
| 948 | 
            +
                                            eval_capacity_factor=config.moe_eval_capacity_factor,
         | 
| 949 | 
            +
                                            enable_expert_tensor_parallelism=config.enable_expert_tensor_parallelism,
         | 
| 950 | 
            +
                                            min_capacity=config.moe_min_capacity,
         | 
| 951 | 
            +
                                            drop_tokens=config.moe_token_dropping
         | 
| 952 | 
            +
                                            )
         | 
| 953 | 
            +
                        else:
         | 
| 954 | 
            +
                            # "local" MoE implementation
         | 
| 955 | 
            +
                            self.gate = nn.Linear(self.hidden_dim, self.num_experts, bias=False)
         | 
| 956 | 
            +
                            self.experts = nn.ModuleList([ArcticMLP(config,
         | 
| 957 | 
            +
                                                                 use_deepspeed_implementation=self.use_deepspeed_implementation,                                       
         | 
| 958 | 
            +
                                                                 ds_optimized_quantization_config=quantization_config,
         | 
| 959 | 
            +
                                                                 ds_optimized_lora_config=deepspeed_lora,
         | 
| 960 | 
            +
                                                                 shard_base_weights_if_doing_lora=True) for i in range(self.num_experts)])
         | 
| 961 | 
            +
             | 
| 962 | 
            +
                    # if torch.distributed.get_rank() == 0:
         | 
| 963 | 
            +
                    #     deepspeed.runtime.utils.see_memory_usage("", force=True)
         | 
| 964 | 
            +
             | 
| 965 | 
            +
             | 
| 966 | 
            +
                # Similar in behavior to transformers.models.mixtral.modeling_mixtral.MixtralSparseMoeBlock.forward but more efficient.
         | 
| 967 | 
            +
                def _moe_foreward(self, hidden_states: torch.Tensor) -> torch.Tensor:
         | 
| 968 | 
            +
                    batch_size, sequence_length, hidden_dim = hidden_states.shape
         | 
| 969 | 
            +
                    hidden_states = hidden_states.view(-1, hidden_dim)
         | 
| 970 | 
            +
                    # router_logits: (batch * sequence_length, n_experts)
         | 
| 971 | 
            +
                    router_logits = self.gate(hidden_states)
         | 
| 972 | 
            +
             | 
| 973 | 
            +
                    routing_weights = F.softmax(router_logits, dim=1, dtype=torch.float)
         | 
| 974 | 
            +
                    routing_weights, selected_experts = torch.topk(routing_weights, self.top_k, dim=-1)
         | 
| 975 | 
            +
                    if self.top_k > 1:
         | 
| 976 | 
            +
                        routing_weights /= routing_weights.sum(dim=-1, keepdim=True)
         | 
| 977 | 
            +
                    # we cast back to the input dtype
         | 
| 978 | 
            +
             | 
| 979 | 
            +
                    final_hidden_states = torch.zeros(
         | 
| 980 | 
            +
                        (batch_size * sequence_length, hidden_dim), dtype=hidden_states.dtype, device=hidden_states.device
         | 
| 981 | 
            +
                    )
         | 
| 982 | 
            +
             | 
| 983 | 
            +
                    # Matching between experts, tokens, and their top-k rank. For every i,
         | 
| 984 | 
            +
                    # expert_idx[i] is the rank topk_idx[i] expert for token_idx[i].
         | 
| 985 | 
            +
                    expert_idx, token_idx, topk_idx = torch.where(
         | 
| 986 | 
            +
                        selected_experts == torch.arange(
         | 
| 987 | 
            +
                            self.num_experts,
         | 
| 988 | 
            +
                            device=selected_experts.device,
         | 
| 989 | 
            +
                        ).view((self.num_experts, 1, 1))
         | 
| 990 | 
            +
                    )
         | 
| 991 | 
            +
             | 
| 992 | 
            +
                    # Split into one chunk per expert.
         | 
| 993 | 
            +
                    bincount = torch.bincount(expert_idx, minlength=self.num_experts).tolist()
         | 
| 994 | 
            +
                    token_idx = token_idx.split(bincount)
         | 
| 995 | 
            +
                    topk_idx = topk_idx.split(bincount)
         | 
| 996 | 
            +
             | 
| 997 | 
            +
                    # Loop over all available experts in the model and perform the computation on each expert
         | 
| 998 | 
            +
                    for expert_layer, top_x, idx in zip(self.experts, token_idx, topk_idx):
         | 
| 999 | 
            +
                        if top_x.shape[0] == 0:
         | 
| 1000 | 
            +
                            continue
         | 
| 1001 | 
            +
             | 
| 1002 | 
            +
                        # in torch it is faster to index using lists than torch tensors
         | 
| 1003 | 
            +
                        top_x_list = top_x.tolist()
         | 
| 1004 | 
            +
                        idx_list = idx.tolist()
         | 
| 1005 | 
            +
             | 
| 1006 | 
            +
                        # Index the correct hidden states and compute the expert hidden state for
         | 
| 1007 | 
            +
                        # the current expert. We need to make sure to multiply the output hidden
         | 
| 1008 | 
            +
                        # states by `routing_weights` on the corresponding tokens (top-1 and top-2)
         | 
| 1009 | 
            +
                        current_state = hidden_states[None, top_x_list].reshape(-1, hidden_dim)
         | 
| 1010 | 
            +
                        current_hidden_states = expert_layer(current_state) * routing_weights[top_x_list, idx_list, None]
         | 
| 1011 | 
            +
             | 
| 1012 | 
            +
                        # However `index_add_` only support torch tensors for indexing so we'll use
         | 
| 1013 | 
            +
                        # the `top_x` tensor here.
         | 
| 1014 | 
            +
                        final_hidden_states.index_add_(0, top_x, current_hidden_states.to(hidden_states.dtype))
         | 
| 1015 | 
            +
                        # torch.distributed.barrier()
         | 
| 1016 | 
            +
                    final_hidden_states = final_hidden_states.reshape(batch_size, sequence_length, hidden_dim)
         | 
| 1017 | 
            +
                    return final_hidden_states, load_balancing_loss_func((router_logits, ), self.num_experts, self.top_k) # ZY: let's directly output the loss to align what we have in ds
         | 
| 1018 | 
            +
             | 
| 1019 | 
            +
                def forward(self, hidden_states: torch.Tensor):
         | 
| 1020 | 
            +
                    if self.is_moe_layer:
         | 
| 1021 | 
            +
                        if self.use_deepspeed_implementation:
         | 
| 1022 | 
            +
                            # deepspeed returns a tuple including output, gate loss, and expert count.
         | 
| 1023 | 
            +
                            hidden_states, moe_loss, _ = self.mlp(hidden_states)
         | 
| 1024 | 
            +
                            return hidden_states, moe_loss
         | 
| 1025 | 
            +
                        else:
         | 
| 1026 | 
            +
                            return self._moe_foreward(hidden_states)
         | 
| 1027 | 
            +
                    else:
         | 
| 1028 | 
            +
                        return self.mlp(hidden_states), torch.tensor(0.0, device=hidden_states.device, dtype=hidden_states.dtype)
         | 
| 1029 | 
            +
             | 
| 1030 | 
            +
             | 
| 1031 | 
            +
            class ArcticDecoderLayer(nn.Module):
         | 
| 1032 | 
            +
                def __init__(self, config: ArcticConfig, layer_idx: int, **kwargs):
         | 
| 1033 | 
            +
                    super().__init__()
         | 
| 1034 | 
            +
                    self.layer_idx = layer_idx
         | 
| 1035 | 
            +
                    self.hidden_size = config.hidden_size
         | 
| 1036 | 
            +
                    self.self_attn = MIXTRAL_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx, **kwargs)
         | 
| 1037 | 
            +
                    self.block_sparse_moe = ArcticMoE(config, layer_id=layer_idx, **kwargs)
         | 
| 1038 | 
            +
                    self.input_layernorm = ArcticRMSNorm(config.hidden_size, eps=config.rms_norm_eps) 
         | 
| 1039 | 
            +
                    self.post_attention_layernorm = ArcticRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
         | 
| 1040 | 
            +
                    self.use_deepspeed_implementation = USE_DEEPSPEED_MOE_ARG in kwargs and kwargs[USE_DEEPSPEED_MOE_ARG]
         | 
| 1041 | 
            +
             | 
| 1042 | 
            +
                    self.parallel_attn_mlp_res = config.parallel_attn_mlp_res and self.block_sparse_moe.is_moe_layer # add residual only when it is moe layer
         | 
| 1043 | 
            +
                    deepspeed_quantization = kwargs.get(DEEPSPEED_QUANTIZATION_CONFIG)
         | 
| 1044 | 
            +
                    deepspeed_lora = kwargs.get(DEEPSPEED_LORA_CONFIG)
         | 
| 1045 | 
            +
                    if self.parallel_attn_mlp_res:
         | 
| 1046 | 
            +
                        self.residual_layernorm = ArcticRMSNorm(config.hidden_size, eps=config.rms_norm_eps) 
         | 
| 1047 | 
            +
                        self.residual_mlp =  ArcticMLP(config,
         | 
| 1048 | 
            +
                                                    use_deepspeed_implementation=self.use_deepspeed_implementation,
         | 
| 1049 | 
            +
                                                    is_residual_mlp=True,
         | 
| 1050 | 
            +
                                                    ds_optimized_quantization_config=deepspeed_quantization,
         | 
| 1051 | 
            +
                                                    ds_optimized_lora_config=deepspeed_lora,
         | 
| 1052 | 
            +
                                                    shard_base_weights_if_doing_lora=True) # for the residual layer. always shard the base weight if doing deepspeed lora.
         | 
| 1053 | 
            +
             | 
| 1054 | 
            +
                def forward(
         | 
| 1055 | 
            +
                    self,
         | 
| 1056 | 
            +
                    hidden_states: torch.Tensor,
         | 
| 1057 | 
            +
                    attention_mask: Optional[torch.Tensor] = None,
         | 
| 1058 | 
            +
                    position_ids: Optional[torch.LongTensor] = None,
         | 
| 1059 | 
            +
                    past_key_value: Optional[Tuple[torch.Tensor]] = None,
         | 
| 1060 | 
            +
                    output_attentions: Optional[bool] = False,
         | 
| 1061 | 
            +
                    use_cache: Optional[bool] = False,
         | 
| 1062 | 
            +
                    **kwargs,
         | 
| 1063 | 
            +
                ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
         | 
| 1064 | 
            +
                    if "padding_mask" in kwargs:
         | 
| 1065 | 
            +
                        warnings.warn(
         | 
| 1066 | 
            +
                            "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
         | 
| 1067 | 
            +
                        )
         | 
| 1068 | 
            +
                    """
         | 
| 1069 | 
            +
                    Args:
         | 
| 1070 | 
            +
                        hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
         | 
| 1071 | 
            +
                        attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
         | 
| 1072 | 
            +
                            `(batch, sequence_length)` where padding elements are indicated by 0.
         | 
| 1073 | 
            +
                        past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
         | 
| 1074 | 
            +
                        output_attentions (`bool`, *optional*):
         | 
| 1075 | 
            +
                            Whether or not to return the attentions tensors of all attention layers. See `attentions` under
         | 
| 1076 | 
            +
                            returned tensors for more detail.
         | 
| 1077 | 
            +
                        use_cache (`bool`, *optional*):
         | 
| 1078 | 
            +
                            If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
         | 
| 1079 | 
            +
                            (see `past_key_values`).
         | 
| 1080 | 
            +
                    """
         | 
| 1081 | 
            +
             | 
| 1082 | 
            +
                    residual_input = hidden_states
         | 
| 1083 | 
            +
             | 
| 1084 | 
            +
                    hidden_states = self.input_layernorm(hidden_states)
         | 
| 1085 | 
            +
             | 
| 1086 | 
            +
                    # Self Attention
         | 
| 1087 | 
            +
                    hidden_states, self_attn_weights, present_key_value = self.self_attn(
         | 
| 1088 | 
            +
                        hidden_states=hidden_states,
         | 
| 1089 | 
            +
                        attention_mask=attention_mask,
         | 
| 1090 | 
            +
                        position_ids=position_ids,
         | 
| 1091 | 
            +
                        past_key_value=past_key_value,
         | 
| 1092 | 
            +
                        output_attentions=output_attentions,
         | 
| 1093 | 
            +
                        use_cache=use_cache,
         | 
| 1094 | 
            +
                    )
         | 
| 1095 | 
            +
                    hidden_states = residual_input + hidden_states
         | 
| 1096 | 
            +
             | 
| 1097 | 
            +
                    residual_attn = hidden_states
         | 
| 1098 | 
            +
                    
         | 
| 1099 | 
            +
                    if self.parallel_attn_mlp_res:
         | 
| 1100 | 
            +
                        # Note the architecture here is that the MOE layers reads the **pre-attention** input while there is a "normal" transformer residual part.
         | 
| 1101 | 
            +
                        # This is to achieve better parallelization.
         | 
| 1102 | 
            +
             | 
| 1103 | 
            +
                        # residual mlp part
         | 
| 1104 | 
            +
             | 
| 1105 | 
            +
                        hidden_states = self.residual_layernorm(hidden_states)
         | 
| 1106 | 
            +
                        hidden_states = self.residual_mlp(hidden_states)
         | 
| 1107 | 
            +
                        residual_residual = residual_attn + hidden_states
         | 
| 1108 | 
            +
                        # parallel mlp moe part
         | 
| 1109 | 
            +
                        hidden_states = self.post_attention_layernorm(residual_input) # parallel attn mlp has the same input
         | 
| 1110 | 
            +
                        hidden_states, gate_loss = self.block_sparse_moe(hidden_states)
         | 
| 1111 | 
            +
                        hidden_states = residual_residual + hidden_states
         | 
| 1112 | 
            +
                    else:
         | 
| 1113 | 
            +
                        hidden_states = self.post_attention_layernorm(hidden_states)
         | 
| 1114 | 
            +
                        hidden_states, gate_loss = self.block_sparse_moe(hidden_states)
         | 
| 1115 | 
            +
                        hidden_states = residual_attn + hidden_states
         | 
| 1116 | 
            +
             | 
| 1117 | 
            +
                    outputs = (hidden_states,)
         | 
| 1118 | 
            +
             | 
| 1119 | 
            +
                    if output_attentions:
         | 
| 1120 | 
            +
                        outputs += (self_attn_weights,)
         | 
| 1121 | 
            +
             | 
| 1122 | 
            +
                    if use_cache:
         | 
| 1123 | 
            +
                        outputs += (present_key_value,)
         | 
| 1124 | 
            +
             | 
| 1125 | 
            +
                    outputs += (gate_loss,)
         | 
| 1126 | 
            +
             | 
| 1127 | 
            +
                    return outputs
         | 
| 1128 | 
            +
             | 
| 1129 | 
            +
             | 
| 1130 | 
            +
            ARCTIC_START_DOCSTRING = r"""
         | 
| 1131 | 
            +
                This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
         | 
| 1132 | 
            +
                library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
         | 
| 1133 | 
            +
                etc.)
         | 
| 1134 | 
            +
             | 
| 1135 | 
            +
                This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
         | 
| 1136 | 
            +
                Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
         | 
| 1137 | 
            +
                and behavior.
         | 
| 1138 | 
            +
             | 
| 1139 | 
            +
                Parameters:
         | 
| 1140 | 
            +
                    config ([`ArcticConfig`]):
         | 
| 1141 | 
            +
                        Model configuration class with all the parameters of the model. Initializing with a config file does not
         | 
| 1142 | 
            +
                        load the weights associated with the model, only the configuration. Check out the
         | 
| 1143 | 
            +
                        [`~PreTrainedModel.from_pretrained`] method to load the model weights.
         | 
| 1144 | 
            +
            """
         | 
| 1145 | 
            +
             | 
| 1146 | 
            +
             | 
| 1147 | 
            +
            @add_start_docstrings(
         | 
| 1148 | 
            +
                "The bare Arctic Model outputting raw hidden-states without any specific head on top.",
         | 
| 1149 | 
            +
                ARCTIC_START_DOCSTRING,
         | 
| 1150 | 
            +
            )
         | 
| 1151 | 
            +
            # Copied from transformers.models.mistral.modeling_mistral.MistralPreTrainedModel with Mistral->Arctic
         | 
| 1152 | 
            +
            class ArcticPreTrainedModel(PreTrainedModel):
         | 
| 1153 | 
            +
                config_class = ArcticConfig
         | 
| 1154 | 
            +
                base_model_prefix = "model"
         | 
| 1155 | 
            +
                supports_gradient_checkpointing = True
         | 
| 1156 | 
            +
                _no_split_modules = ["ArcticDecoderLayer"]
         | 
| 1157 | 
            +
                _skip_keys_device_placement = "past_key_values"
         | 
| 1158 | 
            +
                _supports_flash_attn_2 = True
         | 
| 1159 | 
            +
                _supports_sdpa = True
         | 
| 1160 | 
            +
                _supports_cache_class = True
         | 
| 1161 | 
            +
             | 
| 1162 | 
            +
                def _init_weights(self, module):
         | 
| 1163 | 
            +
                    std = self.config.initializer_range
         | 
| 1164 | 
            +
                    # if is_deepspeed_available():
         | 
| 1165 | 
            +
                    #     # TODO(rajhans): remove this once ds has init for quantizedlinear.
         | 
| 1166 | 
            +
                    #     try:
         | 
| 1167 | 
            +
                    #         from deepspeed.linear.quantization import QuantizedLinear, QuantizedParameter
         | 
| 1168 | 
            +
                    #     if isinstance(module, QuantizedLinear):
         | 
| 1169 | 
            +
                    #         weights = module.weight.dequantized()
         | 
| 1170 | 
            +
                    #         weights.normal_(mean=0.0, std=std)
         | 
| 1171 | 
            +
                    #         if module.bias is not None:
         | 
| 1172 | 
            +
                    #             module.bias.data.zero_()
         | 
| 1173 | 
            +
                    #         module.weight = QuantizedParameter(weights)
         | 
| 1174 | 
            +
                    #         module.weight.to(dtype=torch.bfloat16, device=weights.device)
         | 
| 1175 | 
            +
                    # el
         | 
| 1176 | 
            +
                    if isinstance(module, nn.Linear):
         | 
| 1177 | 
            +
                        module.weight.data.normal_(mean=0.0, std=std)
         | 
| 1178 | 
            +
                        if module.bias is not None:
         | 
| 1179 | 
            +
                            module.bias.data.zero_()
         | 
| 1180 | 
            +
                    elif isinstance(module, nn.Embedding):
         | 
| 1181 | 
            +
                        module.weight.data.normal_(mean=0.0, std=std)
         | 
| 1182 | 
            +
                        if module.padding_idx is not None:
         | 
| 1183 | 
            +
                            module.weight.data[module.padding_idx].zero_()
         | 
| 1184 | 
            +
             | 
| 1185 | 
            +
            MIXTRAL_INPUTS_DOCSTRING = r"""
         | 
| 1186 | 
            +
                Args:
         | 
| 1187 | 
            +
                    input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
         | 
| 1188 | 
            +
                        Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
         | 
| 1189 | 
            +
                        it.
         | 
| 1190 | 
            +
             | 
| 1191 | 
            +
                        Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
         | 
| 1192 | 
            +
                        [`PreTrainedTokenizer.__call__`] for details.
         | 
| 1193 | 
            +
             | 
| 1194 | 
            +
                        [What are input IDs?](../glossary#input-ids)
         | 
| 1195 | 
            +
                    attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
         | 
| 1196 | 
            +
                        Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
         | 
| 1197 | 
            +
             | 
| 1198 | 
            +
                        - 1 for tokens that are **not masked**,
         | 
| 1199 | 
            +
                        - 0 for tokens that are **masked**.
         | 
| 1200 | 
            +
             | 
| 1201 | 
            +
                        [What are attention masks?](../glossary#attention-mask)
         | 
| 1202 | 
            +
             | 
| 1203 | 
            +
                        Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
         | 
| 1204 | 
            +
                        [`PreTrainedTokenizer.__call__`] for details.
         | 
| 1205 | 
            +
             | 
| 1206 | 
            +
                        If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
         | 
| 1207 | 
            +
                        `past_key_values`).
         | 
| 1208 | 
            +
             | 
| 1209 | 
            +
                        If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
         | 
| 1210 | 
            +
                        and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
         | 
| 1211 | 
            +
                        information on the default strategy.
         | 
| 1212 | 
            +
             | 
| 1213 | 
            +
                        - 1 indicates the head is **not masked**,
         | 
| 1214 | 
            +
                        - 0 indicates the head is **masked**.
         | 
| 1215 | 
            +
                    position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
         | 
| 1216 | 
            +
                        Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
         | 
| 1217 | 
            +
                        config.n_positions - 1]`.
         | 
| 1218 | 
            +
             | 
| 1219 | 
            +
                        [What are position IDs?](../glossary#position-ids)
         | 
| 1220 | 
            +
                    past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
         | 
| 1221 | 
            +
                        Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
         | 
| 1222 | 
            +
                        `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
         | 
| 1223 | 
            +
                        `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
         | 
| 1224 | 
            +
             | 
| 1225 | 
            +
                        Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
         | 
| 1226 | 
            +
                        blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
         | 
| 1227 | 
            +
             | 
| 1228 | 
            +
                        If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
         | 
| 1229 | 
            +
                        don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
         | 
| 1230 | 
            +
                        `decoder_input_ids` of shape `(batch_size, sequence_length)`.
         | 
| 1231 | 
            +
                    inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
         | 
| 1232 | 
            +
                        Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
         | 
| 1233 | 
            +
                        is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
         | 
| 1234 | 
            +
                        model's internal embedding lookup matrix.
         | 
| 1235 | 
            +
                    use_cache (`bool`, *optional*):
         | 
| 1236 | 
            +
                        If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
         | 
| 1237 | 
            +
                        `past_key_values`).
         | 
| 1238 | 
            +
                    output_attentions (`bool`, *optional*):
         | 
| 1239 | 
            +
                        Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
         | 
| 1240 | 
            +
                        tensors for more detail.
         | 
| 1241 | 
            +
                    output_hidden_states (`bool`, *optional*):
         | 
| 1242 | 
            +
                        Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
         | 
| 1243 | 
            +
                        more detail.
         | 
| 1244 | 
            +
                    return_dict (`bool`, *optional*):
         | 
| 1245 | 
            +
                        Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
         | 
| 1246 | 
            +
            """
         | 
| 1247 | 
            +
             | 
| 1248 | 
            +
             | 
| 1249 | 
            +
            @add_start_docstrings(
         | 
| 1250 | 
            +
                "The bare Arctic Model outputting raw hidden-states without any specific head on top.",
         | 
| 1251 | 
            +
                ARCTIC_START_DOCSTRING,
         | 
| 1252 | 
            +
            )
         | 
| 1253 | 
            +
            # Copied from transformers.models.mistral.modeling_mistral.MistralModel with MISTRAL->MIXTRAL,Mistral->Arctic
         | 
| 1254 | 
            +
            class ArcticModel(ArcticPreTrainedModel):
         | 
| 1255 | 
            +
                """
         | 
| 1256 | 
            +
                Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`ArcticDecoderLayer`]
         | 
| 1257 | 
            +
             | 
| 1258 | 
            +
                Args:
         | 
| 1259 | 
            +
                    config: ArcticConfig
         | 
| 1260 | 
            +
                """
         | 
| 1261 | 
            +
             | 
| 1262 | 
            +
                def __init__(self, config: ArcticConfig, **kwargs):
         | 
| 1263 | 
            +
                    super().__init__(config)
         | 
| 1264 | 
            +
                    self.padding_idx = config.pad_token_id
         | 
| 1265 | 
            +
                    self.vocab_size = config.vocab_size
         | 
| 1266 | 
            +
             | 
| 1267 | 
            +
                    self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
         | 
| 1268 | 
            +
                    self.layers = nn.ModuleList(
         | 
| 1269 | 
            +
                        [ArcticDecoderLayer(config, layer_idx, **kwargs) for layer_idx in range(config.num_hidden_layers)]
         | 
| 1270 | 
            +
                    )
         | 
| 1271 | 
            +
                    self._attn_implementation = config._attn_implementation
         | 
| 1272 | 
            +
                    self.norm = ArcticRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
         | 
| 1273 | 
            +
             | 
| 1274 | 
            +
                    self.gradient_checkpointing = True
         | 
| 1275 | 
            +
                    # Initialize weights and apply final processing
         | 
| 1276 | 
            +
                    self.post_init()
         | 
| 1277 | 
            +
             | 
| 1278 | 
            +
                def get_input_embeddings(self):
         | 
| 1279 | 
            +
                    return self.embed_tokens
         | 
| 1280 | 
            +
             | 
| 1281 | 
            +
                def set_input_embeddings(self, value):
         | 
| 1282 | 
            +
                    self.embed_tokens = value
         | 
| 1283 | 
            +
             | 
| 1284 | 
            +
                # Ignore copy
         | 
| 1285 | 
            +
                @add_start_docstrings_to_model_forward(MIXTRAL_INPUTS_DOCSTRING)
         | 
| 1286 | 
            +
                def forward(
         | 
| 1287 | 
            +
                    self,
         | 
| 1288 | 
            +
                    input_ids: torch.LongTensor = None,
         | 
| 1289 | 
            +
                    attention_mask: Optional[torch.Tensor] = None,
         | 
| 1290 | 
            +
                    position_ids: Optional[torch.LongTensor] = None,
         | 
| 1291 | 
            +
                    past_key_values: Optional[List[torch.FloatTensor]] = None,
         | 
| 1292 | 
            +
                    inputs_embeds: Optional[torch.FloatTensor] = None,
         | 
| 1293 | 
            +
                    use_cache: Optional[bool] = None,
         | 
| 1294 | 
            +
                    output_attentions: Optional[bool] = None,
         | 
| 1295 | 
            +
                    output_hidden_states: Optional[bool] = None,
         | 
| 1296 | 
            +
                    return_dict: Optional[bool] = None,
         | 
| 1297 | 
            +
                ) -> Union[Tuple, MoeModelOutputWithPast]:
         | 
| 1298 | 
            +
                    output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
         | 
| 1299 | 
            +
                    output_hidden_states = (
         | 
| 1300 | 
            +
                        output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
         | 
| 1301 | 
            +
                    )
         | 
| 1302 | 
            +
                    use_cache = use_cache if use_cache is not None else self.config.use_cache
         | 
| 1303 | 
            +
             | 
| 1304 | 
            +
                    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
         | 
| 1305 | 
            +
             | 
| 1306 | 
            +
                    # retrieve input_ids and inputs_embeds
         | 
| 1307 | 
            +
                    if input_ids is not None and inputs_embeds is not None:
         | 
| 1308 | 
            +
                        raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
         | 
| 1309 | 
            +
                    elif input_ids is not None:
         | 
| 1310 | 
            +
                        batch_size, seq_length = input_ids.shape
         | 
| 1311 | 
            +
                    elif inputs_embeds is not None:
         | 
| 1312 | 
            +
                        batch_size, seq_length, _ = inputs_embeds.shape
         | 
| 1313 | 
            +
                    else:
         | 
| 1314 | 
            +
                        raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
         | 
| 1315 | 
            +
             | 
| 1316 | 
            +
                    past_key_values_length = 0
         | 
| 1317 | 
            +
             | 
| 1318 | 
            +
                    if self.gradient_checkpointing and self.training:
         | 
| 1319 | 
            +
                        if use_cache:
         | 
| 1320 | 
            +
                            logger.warning_once(
         | 
| 1321 | 
            +
                                "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
         | 
| 1322 | 
            +
                            )
         | 
| 1323 | 
            +
                            use_cache = False
         | 
| 1324 | 
            +
             | 
| 1325 | 
            +
                    if use_cache:
         | 
| 1326 | 
            +
                        use_legacy_cache = not isinstance(past_key_values, Cache)
         | 
| 1327 | 
            +
                        if use_legacy_cache:
         | 
| 1328 | 
            +
                            past_key_values = DynamicCache.from_legacy_cache(past_key_values)
         | 
| 1329 | 
            +
                        past_key_values_length = past_key_values.get_usable_length(seq_length)
         | 
| 1330 | 
            +
             | 
| 1331 | 
            +
                    if position_ids is None:
         | 
| 1332 | 
            +
                        device = input_ids.device if input_ids is not None else inputs_embeds.device
         | 
| 1333 | 
            +
                        position_ids = torch.arange(
         | 
| 1334 | 
            +
                            past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
         | 
| 1335 | 
            +
                        )
         | 
| 1336 | 
            +
                        position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
         | 
| 1337 | 
            +
                    else:
         | 
| 1338 | 
            +
                        position_ids = position_ids.view(-1, seq_length).long()
         | 
| 1339 | 
            +
             | 
| 1340 | 
            +
                    if inputs_embeds is None:
         | 
| 1341 | 
            +
                        inputs_embeds = self.embed_tokens(input_ids)
         | 
| 1342 | 
            +
             | 
| 1343 | 
            +
                    if attention_mask is not None and self._attn_implementation == "flash_attention_2" and use_cache:
         | 
| 1344 | 
            +
                        is_padding_right = attention_mask[:, -1].sum().item() != batch_size
         | 
| 1345 | 
            +
                        if is_padding_right:
         | 
| 1346 | 
            +
                            raise ValueError(
         | 
| 1347 | 
            +
                                "You are attempting to perform batched generation with padding_side='right'"
         | 
| 1348 | 
            +
                                " this may lead to unexpected behaviour for Flash Attention version of Arctic. Make sure to "
         | 
| 1349 | 
            +
                                " call `tokenizer.padding_side  = 'left'` before tokenizing the input. "
         | 
| 1350 | 
            +
                            )
         | 
| 1351 | 
            +
             | 
| 1352 | 
            +
                    if self._attn_implementation == "flash_attention_2":
         | 
| 1353 | 
            +
                        # 2d mask is passed through the layers
         | 
| 1354 | 
            +
                        attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
         | 
| 1355 | 
            +
                    elif self._attn_implementation == "sdpa" and not output_attentions:
         | 
| 1356 | 
            +
                        # output_attentions=True can not be supported when using SDPA, and we fall back on
         | 
| 1357 | 
            +
                        # the manual implementation that requires a 4D causal mask in all cases.
         | 
| 1358 | 
            +
                        attention_mask = _prepare_4d_causal_attention_mask_for_sdpa(
         | 
| 1359 | 
            +
                            attention_mask,
         | 
| 1360 | 
            +
                            (batch_size, seq_length),
         | 
| 1361 | 
            +
                            inputs_embeds,
         | 
| 1362 | 
            +
                            past_key_values_length,
         | 
| 1363 | 
            +
                        )
         | 
| 1364 | 
            +
                    else:
         | 
| 1365 | 
            +
                        # 4d mask is passed through the layers
         | 
| 1366 | 
            +
                        attention_mask = _prepare_4d_causal_attention_mask(
         | 
| 1367 | 
            +
                            attention_mask,
         | 
| 1368 | 
            +
                            (batch_size, seq_length),
         | 
| 1369 | 
            +
                            inputs_embeds,
         | 
| 1370 | 
            +
                            past_key_values_length,
         | 
| 1371 | 
            +
                            sliding_window=self.config.sliding_window,
         | 
| 1372 | 
            +
                        )
         | 
| 1373 | 
            +
             | 
| 1374 | 
            +
                    hidden_states = inputs_embeds
         | 
| 1375 | 
            +
             | 
| 1376 | 
            +
                    # decoder layers
         | 
| 1377 | 
            +
                    all_hidden_states = () if output_hidden_states else None
         | 
| 1378 | 
            +
                    all_self_attns = () if output_attentions else None
         | 
| 1379 | 
            +
                    all_router_losses = ()
         | 
| 1380 | 
            +
                    next_decoder_cache = None
         | 
| 1381 | 
            +
             | 
| 1382 | 
            +
                    for i, decoder_layer in enumerate(self.layers):
         | 
| 1383 | 
            +
                        if output_hidden_states:
         | 
| 1384 | 
            +
                            all_hidden_states += (hidden_states,)
         | 
| 1385 | 
            +
             | 
| 1386 | 
            +
                        if self.gradient_checkpointing and self.training:
         | 
| 1387 | 
            +
                            layer_outputs = self._gradient_checkpointing_func(
         | 
| 1388 | 
            +
                                decoder_layer.__call__,
         | 
| 1389 | 
            +
                                hidden_states,
         | 
| 1390 | 
            +
                                attention_mask,
         | 
| 1391 | 
            +
                                position_ids,
         | 
| 1392 | 
            +
                                past_key_values,
         | 
| 1393 | 
            +
                                output_attentions,
         | 
| 1394 | 
            +
                                use_cache,
         | 
| 1395 | 
            +
                            )
         | 
| 1396 | 
            +
                        else:
         | 
| 1397 | 
            +
                            layer_outputs = decoder_layer(
         | 
| 1398 | 
            +
                                hidden_states,
         | 
| 1399 | 
            +
                                attention_mask=attention_mask,
         | 
| 1400 | 
            +
                                position_ids=position_ids,
         | 
| 1401 | 
            +
                                past_key_value=past_key_values,
         | 
| 1402 | 
            +
                                output_attentions=output_attentions,
         | 
| 1403 | 
            +
                                use_cache=use_cache,
         | 
| 1404 | 
            +
                            )
         | 
| 1405 | 
            +
             | 
| 1406 | 
            +
                        hidden_states = layer_outputs[0]
         | 
| 1407 | 
            +
             | 
| 1408 | 
            +
                        if use_cache:
         | 
| 1409 | 
            +
                            if hasattr(layer_outputs[2 if output_attentions else 1], 'to_legacy_cache'):
         | 
| 1410 | 
            +
                                next_decoder_cache = layer_outputs[2 if output_attentions else 1]
         | 
| 1411 | 
            +
                            else:
         | 
| 1412 | 
            +
                                if next_decoder_cache is None:
         | 
| 1413 | 
            +
                                    next_decoder_cache = [layer_outputs[2 if output_attentions else 1]]
         | 
| 1414 | 
            +
                                else:
         | 
| 1415 | 
            +
                                    next_decoder_cache.append(layer_outputs[2 if output_attentions else 1])
         | 
| 1416 | 
            +
             | 
| 1417 | 
            +
                        if output_attentions:
         | 
| 1418 | 
            +
                            all_self_attns += (layer_outputs[1],)
         | 
| 1419 | 
            +
             | 
| 1420 | 
            +
                        all_router_losses += (layer_outputs[-1],)
         | 
| 1421 | 
            +
                    hidden_states = self.norm(hidden_states)
         | 
| 1422 | 
            +
             | 
| 1423 | 
            +
                    # add hidden states from the last decoder layer
         | 
| 1424 | 
            +
                    if output_hidden_states:
         | 
| 1425 | 
            +
                        all_hidden_states += (hidden_states,)
         | 
| 1426 | 
            +
             | 
| 1427 | 
            +
                    next_cache = None
         | 
| 1428 | 
            +
                    if use_cache:
         | 
| 1429 | 
            +
                        next_cache = next_decoder_cache.to_legacy_cache() if use_legacy_cache and hasattr(next_decoder_cache, 'to_legacy_cache') else next_decoder_cache
         | 
| 1430 | 
            +
                    torch.cuda.empty_cache()        
         | 
| 1431 | 
            +
             | 
| 1432 | 
            +
                    if not return_dict:
         | 
| 1433 | 
            +
                        return tuple(
         | 
| 1434 | 
            +
                            v
         | 
| 1435 | 
            +
                            for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_router_losses]
         | 
| 1436 | 
            +
                            if v is not None
         | 
| 1437 | 
            +
                        )
         | 
| 1438 | 
            +
                    return MoeModelOutputWithPast(
         | 
| 1439 | 
            +
                        last_hidden_state=hidden_states,
         | 
| 1440 | 
            +
                        past_key_values=next_cache,
         | 
| 1441 | 
            +
                        hidden_states=all_hidden_states,
         | 
| 1442 | 
            +
                        attentions=all_self_attns,
         | 
| 1443 | 
            +
                        router_logits=all_router_losses,
         | 
| 1444 | 
            +
                    )
         | 
| 1445 | 
            +
             | 
| 1446 | 
            +
            class ArcticForCausalLM(ArcticPreTrainedModel):
         | 
| 1447 | 
            +
                # TODO(jeffra): update _keys_to_ignore_on_load_unexpected with expert keys not relevant for this rank
         | 
| 1448 | 
            +
                _keys_to_ignore_on_load_unexpected = [r"model\.layers\.\d+\.block_sparse_moe\.experts\.\d+\.w\d+\.weight"
         | 
| 1449 | 
            +
                                                      r"model\.layers\.\d+\.block_sparse_moe\.gate\.weight"]
         | 
| 1450 | 
            +
                _keys_to_ignore_on_load_missing = [r"model\.layers\.\d+\.block_sparse_moe\.mlp\.deepspeed_moe\.experts\.deepspeed_experts\.\d+\.w\d+\.weight",
         | 
| 1451 | 
            +
                                                   r"model\.layers\.\d+\.block_sparse_moe\.mlp\.deepspeed_moe\.gate\.wg\.weight"]
         | 
| 1452 | 
            +
                _tied_weights_keys = []#["lm_head.weight"]
         | 
| 1453 | 
            +
             | 
| 1454 | 
            +
                def __init__(self, config, **kwargs):
         | 
| 1455 | 
            +
                    super().__init__(config)
         | 
| 1456 | 
            +
                    self.model = ArcticModel(config, **kwargs)
         | 
| 1457 | 
            +
                    self.vocab_size = config.vocab_size
         | 
| 1458 | 
            +
                    self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
         | 
| 1459 | 
            +
                    self.router_aux_loss_coef = config.router_aux_loss_coef
         | 
| 1460 | 
            +
                    self.num_experts = config.num_local_experts
         | 
| 1461 | 
            +
                    self.num_experts_per_tok = config.num_experts_per_tok
         | 
| 1462 | 
            +
                    self.use_deepspeed_moe = kwargs.get(USE_DEEPSPEED_MOE_ARG, False)
         | 
| 1463 | 
            +
                    self.moe_expert_parallel_size = kwargs.get(MOE_EXPERT_PARALLEL_SIZE_ARG, 1)
         | 
| 1464 | 
            +
                    self.is_deepspeed_lora = kwargs.get(DEEPSPEED_LORA_CONFIG) is not None
         | 
| 1465 | 
            +
                    self.gradient_checkpointing = True
         | 
| 1466 | 
            +
                    # self.shard_base_weights_if_doing_lora = kwargs.get("shard_base_weights_if_doing_lora", False)
         | 
| 1467 | 
            +
                    # Initialize weights and apply final processing
         | 
| 1468 | 
            +
                    self.post_init()
         | 
| 1469 | 
            +
             | 
| 1470 | 
            +
                def get_input_embeddings(self):
         | 
| 1471 | 
            +
                    return self.model.embed_tokens
         | 
| 1472 | 
            +
             | 
| 1473 | 
            +
                def set_input_embeddings(self, value):
         | 
| 1474 | 
            +
                    self.model.embed_tokens = value
         | 
| 1475 | 
            +
             | 
| 1476 | 
            +
                def get_output_embeddings(self):
         | 
| 1477 | 
            +
                    return self.lm_head
         | 
| 1478 | 
            +
             | 
| 1479 | 
            +
                def set_output_embeddings(self, new_embeddings):
         | 
| 1480 | 
            +
                    self.lm_head = new_embeddings
         | 
| 1481 | 
            +
             | 
| 1482 | 
            +
                def set_decoder(self, decoder):
         | 
| 1483 | 
            +
                    self.model = decoder
         | 
| 1484 | 
            +
             | 
| 1485 | 
            +
                def get_decoder(self):
         | 
| 1486 | 
            +
                    return self.model
         | 
| 1487 | 
            +
             | 
| 1488 | 
            +
             | 
| 1489 | 
            +
                def _expert_number_from_param_name(self, param_name):
         | 
| 1490 | 
            +
                    # example param_name: model.layers.1.block_sparse_moe.experts.10.w1.weight
         | 
| 1491 | 
            +
                    pattern = r'experts\.(\d+)\.'
         | 
| 1492 | 
            +
                    m = re.search(pattern, param_name)
         | 
| 1493 | 
            +
                    if m:
         | 
| 1494 | 
            +
                        return int(m[1])
         | 
| 1495 | 
            +
                    else:
         | 
| 1496 | 
            +
                        return None
         | 
| 1497 | 
            +
             | 
| 1498 | 
            +
                def state_dict(self, *args, **kwargs):
         | 
| 1499 | 
            +
                    state_dict = super().state_dict(*args, **kwargs)
         | 
| 1500 | 
            +
             | 
| 1501 | 
            +
                    if not self.use_deepspeed_moe:
         | 
| 1502 | 
            +
                        return state_dict
         | 
| 1503 | 
            +
             | 
| 1504 | 
            +
                    # when trying to construct the deepspeed checkpoint we don't want to gather everything
         | 
| 1505 | 
            +
                    if not getattr(self, '_gather_expert_params', False):
         | 
| 1506 | 
            +
                        return state_dict
         | 
| 1507 | 
            +
             | 
| 1508 | 
            +
                    rank = torch.distributed.get_rank() if torch.distributed.is_initialized() else 0
         | 
| 1509 | 
            +
                    world_size = torch.distributed.get_world_size() if torch.distributed.is_initialized() else 1
         | 
| 1510 | 
            +
             | 
| 1511 | 
            +
                    # non-lora experts
         | 
| 1512 | 
            +
                    pattern = r"model\.layers\.\d+\.block_sparse_moe\.mlp\.deepspeed_moe\.experts\.deepspeed_experts\.\d+\.w\d+\.weight"
         | 
| 1513 | 
            +
                    expert_params = [s for s in state_dict.keys() if re.search(pattern, s)]
         | 
| 1514 | 
            +
             | 
| 1515 | 
            +
                    for param_name in expert_params:
         | 
| 1516 | 
            +
                        param_tensor = state_dict[param_name].to('cuda')
         | 
| 1517 | 
            +
                        output = [torch.zeros_like(param_tensor) for _ in range(world_size)]
         | 
| 1518 | 
            +
                        torch.distributed.gather(param_tensor, gather_list=output if rank == 0 else None, dst=0, group=None)
         | 
| 1519 | 
            +
                        # rename from local rank to global rank
         | 
| 1520 | 
            +
                        for gather_rank, gather_param in enumerate(output):
         | 
| 1521 | 
            +
                            experts_per_rank = self.num_experts // self.moe_expert_parallel_size
         | 
| 1522 | 
            +
                            new_expert_number = gather_rank * experts_per_rank + self._expert_number_from_param_name(param_name)
         | 
| 1523 | 
            +
                            new_param_name = re.sub(r'(experts\.)(\d+)(\.)', rf'\g<1>{new_expert_number}\3', param_name)
         | 
| 1524 | 
            +
                            state_dict[new_param_name] = gather_param
         | 
| 1525 | 
            +
                            if rank == 0:
         | 
| 1526 | 
            +
                                print(f"adding to state_dict and renaming: {param_name} -> {new_param_name}")
         | 
| 1527 | 
            +
                
         | 
| 1528 | 
            +
                    # Handle custom LoRA implementation  
         | 
| 1529 | 
            +
                    # TODO(rajhans): the part below is untested and shows up when doing lora training. Should not affect inference.
         | 
| 1530 | 
            +
                    if self.is_deepspeed_lora:
         | 
| 1531 | 
            +
                        for param_name in list(state_dict.keys()):  # Use list to avoid RuntimeError due to changing size during iteration  
         | 
| 1532 | 
            +
                            if param_name.endswith("base_weight"):  
         | 
| 1533 | 
            +
                                base_weight = state_dict[param_name].to('cuda')
         | 
| 1534 | 
            +
                                
         | 
| 1535 | 
            +
                                # If the base weight is sharded, gather weights from multiple ranks and concatenate 
         | 
| 1536 | 
            +
                                # except if the weights are from deespeed_moe which is not sharded (due to EP). 
         | 
| 1537 | 
            +
                                if self.shard_base_weights_if_doing_lora and 'deepspeed_moe.experts.deepspeed_experts' not in param_name:
         | 
| 1538 | 
            +
                                    gathered_weights = [torch.zeros_like(base_weight, 
         | 
| 1539 | 
            +
                                                                         device=base_weight.device, dtype=base_weight.dtype) for _ in range(world_size)]
         | 
| 1540 | 
            +
                                    torch.distributed.gather(base_weight, gather_list=gathered_weights if rank == 0 else None, dst=0, group=None)  
         | 
| 1541 | 
            +
                                    base_weight = torch.cat(gathered_weights, dim=1)
         | 
| 1542 | 
            +
             | 
| 1543 | 
            +
             | 
| 1544 | 
            +
                                ## The part below is useful if we want to output HF transformer path weights, but commenting it for now 
         | 
| 1545 | 
            +
                                # Merge the LoRA weights into the base weights  
         | 
| 1546 | 
            +
                                # lora_weight_1 = state_dict.get(param_name.replace("base_weight", "lora_weight_1.weight"))  
         | 
| 1547 | 
            +
                                # lora_weight_2 = state_dict.get(param_name.replace("base_weight", "lora_weight_2.weight"))  
         | 
| 1548 | 
            +
                                # if lora_weight_1 is not None and lora_weight_2 is not None:
         | 
| 1549 | 
            +
                                #     lora_weights = torch.matmul(lora_weight_2, lora_weight_1)
         | 
| 1550 | 
            +
                                #     base_weight += lora_weights
         | 
| 1551 | 
            +
                                # else:
         | 
| 1552 | 
            +
                                #     raise ValueError                  
         | 
| 1553 | 
            +
             | 
| 1554 | 
            +
                                # # Rename the base weight to weight  
         | 
| 1555 | 
            +
                                # new_param_name = param_name.replace("base_weight", "weight")  
         | 
| 1556 | 
            +
                                # state_dict[new_param_name] = base_weight  
         | 
| 1557 | 
            +
                                
         | 
| 1558 | 
            +
                                # Remove the base weight from the state dict  
         | 
| 1559 | 
            +
                                # del state_dict[param_name]    
         | 
| 1560 | 
            +
                    return state_dict      
         | 
| 1561 | 
            +
             | 
| 1562 | 
            +
             | 
| 1563 | 
            +
                def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs):
         | 
| 1564 | 
            +
                    if not self.use_deepspeed_moe:
         | 
| 1565 | 
            +
                        return super()._load_from_state_dict(
         | 
| 1566 | 
            +
                            state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs
         | 
| 1567 | 
            +
                        )
         | 
| 1568 | 
            +
             | 
| 1569 | 
            +
                    world_size = torch.distributed.get_world_size() if torch.distributed.is_initialized() else 1
         | 
| 1570 | 
            +
                    #TODO(jeffra): currently assumes fine-tuning only on one node, fix for world_size != ep size
         | 
| 1571 | 
            +
                    if self.moe_expert_parallel_size > 1:
         | 
| 1572 | 
            +
                        assert self.moe_expert_parallel_size == world_size, \
         | 
| 1573 | 
            +
                                f"currently only support expert parallel size equal to world size but {self.moe_expert_parallel_size=} and {world_size=}"
         | 
| 1574 | 
            +
             | 
| 1575 | 
            +
                    rank = torch.distributed.get_rank() if torch.distributed.is_initialized() else 0
         | 
| 1576 | 
            +
                    num_local_experts = self.num_experts // self.moe_expert_parallel_size
         | 
| 1577 | 
            +
                    local_expert_range = range(num_local_experts * rank, num_local_experts * rank + num_local_experts)
         | 
| 1578 | 
            +
             | 
| 1579 | 
            +
                    # no deepspeed
         | 
| 1580 | 
            +
                    #   model.layers.1.block_sparse_moe.experts.10.w1.weight
         | 
| 1581 | 
            +
                    #   model.layers.1.block_sparse_moe.gate.weight
         | 
| 1582 | 
            +
                    # w. deepspeed
         | 
| 1583 | 
            +
                    #   model.layers.1.block_sparse_moe.mlp.deepspeed_moe.gate.wg.weight
         | 
| 1584 | 
            +
                    #   model.layers.1.block_sparse_moe.mlp.deepspeed_moe.experts.deepspeed_experts.10.w1.weight
         | 
| 1585 | 
            +
             | 
| 1586 | 
            +
                    gate_pattern = r'model\.layers\.\d+\.block_sparse_moe\.gate\.weight'
         | 
| 1587 | 
            +
             | 
| 1588 | 
            +
                    expert_params_to_keep = []
         | 
| 1589 | 
            +
                    expert_params_to_remove = []
         | 
| 1590 | 
            +
                    gate_params = []
         | 
| 1591 | 
            +
                    for param_name in state_dict.keys():
         | 
| 1592 | 
            +
                        expert_number = self._expert_number_from_param_name(param_name)
         | 
| 1593 | 
            +
                        if expert_number is not None:
         | 
| 1594 | 
            +
                            if expert_number in local_expert_range:
         | 
| 1595 | 
            +
                                expert_params_to_keep.append(param_name)
         | 
| 1596 | 
            +
                            else:
         | 
| 1597 | 
            +
                                expert_params_to_remove.append(param_name)
         | 
| 1598 | 
            +
                        elif re.search(gate_pattern, param_name):
         | 
| 1599 | 
            +
                            gate_params.append(param_name)
         | 
| 1600 | 
            +
             | 
| 1601 | 
            +
                    # drop all experts in the state_dict that we don't need locally
         | 
| 1602 | 
            +
                    for param_name in expert_params_to_remove:
         | 
| 1603 | 
            +
                        print(f'{rank=} dropping {param_name}')
         | 
| 1604 | 
            +
                        del state_dict[param_name]
         | 
| 1605 | 
            +
             | 
| 1606 | 
            +
                    # rename remaining experts to align with the local config
         | 
| 1607 | 
            +
                    for param_name in expert_params_to_keep:
         | 
| 1608 | 
            +
                        # adjust expert number wrt expert parallelism
         | 
| 1609 | 
            +
                        new_expert_number = self._expert_number_from_param_name(param_name) % num_local_experts
         | 
| 1610 | 
            +
                        new_param_name = re.sub(r'(experts\.)(\d+)(\.)', rf'\g<1>{new_expert_number}\3', param_name)
         | 
| 1611 | 
            +
             | 
| 1612 | 
            +
                        # use deepspeed moe param path
         | 
| 1613 | 
            +
                        split_param_name = new_param_name.split('.')
         | 
| 1614 | 
            +
                        idx = split_param_name.index('experts')
         | 
| 1615 | 
            +
                        ds_moe_path = "mlp.deepspeed_moe.experts.deepspeed_experts".split('.')
         | 
| 1616 | 
            +
                        new_param_name = split_param_name[0:idx] + ds_moe_path + split_param_name[idx+1:]
         | 
| 1617 | 
            +
                        new_param_name = ".".join(new_param_name)
         | 
| 1618 | 
            +
             | 
| 1619 | 
            +
                        print(f'Deepspeed {rank=}, renaming {param_name} -> {new_param_name}')
         | 
| 1620 | 
            +
                        state_dict[new_param_name] = state_dict.pop(param_name)
         | 
| 1621 | 
            +
             | 
| 1622 | 
            +
                    # rename gate params
         | 
| 1623 | 
            +
                    ds_suffix = "mlp.deepspeed_moe.gate.wg.weight".split('.')
         | 
| 1624 | 
            +
                    for param_name in gate_params:
         | 
| 1625 | 
            +
                        new_param_name = '.'.join(param_name.split('.')[:4] + ds_suffix)
         | 
| 1626 | 
            +
                        print(f'Gating: {rank=}, renaming {param_name} -> {new_param_name}')
         | 
| 1627 | 
            +
                        state_dict[new_param_name] = state_dict.pop(param_name)
         | 
| 1628 | 
            +
             | 
| 1629 | 
            +
                    # If deepspeed lora is enabled, then we need to rename weight to base_weight.
         | 
| 1630 | 
            +
                    # Furthermore, if the base_weight is sharded, we need to shard each weight and select the slice of local rank.
         | 
| 1631 | 
            +
                    if self.is_deepspeed_lora:
         | 
| 1632 | 
            +
                        local_state_dict = self.state_dict()
         | 
| 1633 | 
            +
                        for param_name in local_state_dict:
         | 
| 1634 | 
            +
                            if not param_name.endswith("base_weight"):
         | 
| 1635 | 
            +
                                continue
         | 
| 1636 | 
            +
             | 
| 1637 | 
            +
                            incoming_param_name = param_name.replace("base_weight", "weight")
         | 
| 1638 | 
            +
                            if incoming_param_name not in state_dict:
         | 
| 1639 | 
            +
                                continue
         | 
| 1640 | 
            +
             | 
| 1641 | 
            +
                            incoming_param = state_dict[incoming_param_name]
         | 
| 1642 | 
            +
             | 
| 1643 | 
            +
                            shape_local = local_state_dict[param_name].shape
         | 
| 1644 | 
            +
                            shape_incoming = incoming_param.shape
         | 
| 1645 | 
            +
                            if 'deepspeed_moe' in incoming_param_name:
         | 
| 1646 | 
            +
                                assert shape_local == shape_incoming, "deepspeed moe weights are never sharded"
         | 
| 1647 | 
            +
                            else:
         | 
| 1648 | 
            +
                                assert shape_incoming[1] == shape_local[1] * world_size, "weights should be sharded equally across world size"
         | 
| 1649 | 
            +
                                incoming_param = incoming_param[:, rank*shape_local[1]: (rank+1)*shape_local[1]]
         | 
| 1650 | 
            +
                            print(f'Deepspeed lora: {rank=}, renaming {incoming_param_name} -> {param_name}')
         | 
| 1651 | 
            +
                            state_dict[param_name] = incoming_param
         | 
| 1652 | 
            +
                            del state_dict[incoming_param_name]
         | 
| 1653 | 
            +
             | 
| 1654 | 
            +
                    return super()._load_from_state_dict(
         | 
| 1655 | 
            +
                        state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs
         | 
| 1656 | 
            +
                    )
         | 
| 1657 | 
            +
             | 
| 1658 | 
            +
                @add_start_docstrings_to_model_forward(MIXTRAL_INPUTS_DOCSTRING)
         | 
| 1659 | 
            +
                @replace_return_docstrings(output_type=MoeCausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
         | 
| 1660 | 
            +
                # Ignore copy
         | 
| 1661 | 
            +
                def forward(
         | 
| 1662 | 
            +
                    self,
         | 
| 1663 | 
            +
                    input_ids: torch.LongTensor = None,
         | 
| 1664 | 
            +
                    attention_mask: Optional[torch.Tensor] = None,
         | 
| 1665 | 
            +
                    position_ids: Optional[torch.LongTensor] = None,
         | 
| 1666 | 
            +
                    past_key_values: Optional[List[torch.FloatTensor]] = None,
         | 
| 1667 | 
            +
                    inputs_embeds: Optional[torch.FloatTensor] = None,
         | 
| 1668 | 
            +
                    labels: Optional[torch.LongTensor] = None,
         | 
| 1669 | 
            +
                    use_cache: Optional[bool] = None,
         | 
| 1670 | 
            +
                    output_attentions: Optional[bool] = None,
         | 
| 1671 | 
            +
                    output_hidden_states: Optional[bool] = None,
         | 
| 1672 | 
            +
                    return_dict: Optional[bool] = None,
         | 
| 1673 | 
            +
                ) -> Union[Tuple, MoeCausalLMOutputWithPast]:
         | 
| 1674 | 
            +
                    r"""
         | 
| 1675 | 
            +
                    Args:
         | 
| 1676 | 
            +
                        labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
         | 
| 1677 | 
            +
                            Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
         | 
| 1678 | 
            +
                            config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
         | 
| 1679 | 
            +
                            (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
         | 
| 1680 | 
            +
             | 
| 1681 | 
            +
                    Returns:
         | 
| 1682 | 
            +
             | 
| 1683 | 
            +
                    Example:
         | 
| 1684 | 
            +
             | 
| 1685 | 
            +
                    ```python
         | 
| 1686 | 
            +
                    >>> from transformers import AutoTokenizer, ArcticForCausalLM
         | 
| 1687 | 
            +
             | 
| 1688 | 
            +
                    >>> model = ArcticForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
         | 
| 1689 | 
            +
                    >>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
         | 
| 1690 | 
            +
             | 
| 1691 | 
            +
                    >>> prompt = "Hey, are you conscious? Can you talk to me?"
         | 
| 1692 | 
            +
                    >>> inputs = tokenizer(prompt, return_tensors="pt")
         | 
| 1693 | 
            +
             | 
| 1694 | 
            +
                    >>> # Generate
         | 
| 1695 | 
            +
                    >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
         | 
| 1696 | 
            +
                    >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
         | 
| 1697 | 
            +
                    "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
         | 
| 1698 | 
            +
                    ```"""
         | 
| 1699 | 
            +
             | 
| 1700 | 
            +
                    output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
         | 
| 1701 | 
            +
             | 
| 1702 | 
            +
                    output_hidden_states = (
         | 
| 1703 | 
            +
                        output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
         | 
| 1704 | 
            +
                    )
         | 
| 1705 | 
            +
                    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
         | 
| 1706 | 
            +
             | 
| 1707 | 
            +
                    # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
         | 
| 1708 | 
            +
                    outputs = self.model(
         | 
| 1709 | 
            +
                        input_ids=input_ids,
         | 
| 1710 | 
            +
                        attention_mask=attention_mask,
         | 
| 1711 | 
            +
                        position_ids=position_ids,
         | 
| 1712 | 
            +
                        past_key_values=past_key_values,
         | 
| 1713 | 
            +
                        inputs_embeds=inputs_embeds,
         | 
| 1714 | 
            +
                        use_cache=use_cache,
         | 
| 1715 | 
            +
                        output_attentions=output_attentions,
         | 
| 1716 | 
            +
                        output_hidden_states=output_hidden_states,
         | 
| 1717 | 
            +
                        return_dict=return_dict,
         | 
| 1718 | 
            +
                    )
         | 
| 1719 | 
            +
                    hidden_states = outputs[0]
         | 
| 1720 | 
            +
                    logits = self.lm_head(hidden_states)
         | 
| 1721 | 
            +
                    logits = logits.float()
         | 
| 1722 | 
            +
             | 
| 1723 | 
            +
                    loss = None
         | 
| 1724 | 
            +
                    if labels is not None:
         | 
| 1725 | 
            +
                        # Shift so that tokens < n predict n
         | 
| 1726 | 
            +
                        shift_logits = logits[..., :-1, :].contiguous()
         | 
| 1727 | 
            +
                        shift_labels = labels[..., 1:].contiguous()
         | 
| 1728 | 
            +
                        # Flatten the tokens
         | 
| 1729 | 
            +
                        loss_fct = CrossEntropyLoss()
         | 
| 1730 | 
            +
                        shift_logits = shift_logits.view(-1, self.config.vocab_size)
         | 
| 1731 | 
            +
                        shift_labels = shift_labels.view(-1)
         | 
| 1732 | 
            +
                        # Enable model parallelism
         | 
| 1733 | 
            +
                        shift_labels = shift_labels.to(shift_logits.device)
         | 
| 1734 | 
            +
                        loss = loss_fct(shift_logits, shift_labels)
         | 
| 1735 | 
            +
             | 
| 1736 | 
            +
                    # Move to same device for model parallelism.
         | 
| 1737 | 
            +
                    aux_loss = sum([out.to(logits.device) for out in outputs[-1]])
         | 
| 1738 | 
            +
                    if labels is not None:
         | 
| 1739 | 
            +
                        loss += self.router_aux_loss_coef * aux_loss
         | 
| 1740 | 
            +
             | 
| 1741 | 
            +
                    if not return_dict:
         | 
| 1742 | 
            +
                        output = (logits,) + outputs[1:]
         | 
| 1743 | 
            +
                        # torch.distributed.barrier()
         | 
| 1744 | 
            +
                        return (loss,) + output if loss is not None else output
         | 
| 1745 | 
            +
             | 
| 1746 | 
            +
                    return MoeCausalLMOutputWithPast(
         | 
| 1747 | 
            +
                        loss=loss,
         | 
| 1748 | 
            +
                        aux_loss=aux_loss,
         | 
| 1749 | 
            +
                        logits=logits,
         | 
| 1750 | 
            +
                        past_key_values=outputs.past_key_values,
         | 
| 1751 | 
            +
                        hidden_states=outputs.hidden_states,
         | 
| 1752 | 
            +
                        attentions=outputs.attentions,
         | 
| 1753 | 
            +
                    )
         | 
| 1754 | 
            +
             | 
| 1755 | 
            +
                def prepare_inputs_for_generation(
         | 
| 1756 | 
            +
                    self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
         | 
| 1757 | 
            +
                ):
         | 
| 1758 | 
            +
                    # Omit tokens covered by past_key_values
         | 
| 1759 | 
            +
                    if past_key_values is not None:
         | 
| 1760 | 
            +
                        if isinstance(past_key_values, Cache):
         | 
| 1761 | 
            +
                            cache_length = past_key_values.get_seq_length()
         | 
| 1762 | 
            +
                            past_length = past_key_values.seen_tokens
         | 
| 1763 | 
            +
                            max_cache_length = past_key_values.get_max_length()
         | 
| 1764 | 
            +
                        else:
         | 
| 1765 | 
            +
                            cache_length = past_length = past_key_values[0][0].shape[2]
         | 
| 1766 | 
            +
                            max_cache_length = None
         | 
| 1767 | 
            +
             | 
| 1768 | 
            +
                        # Keep only the unprocessed tokens:
         | 
| 1769 | 
            +
                        # 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
         | 
| 1770 | 
            +
                        # some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
         | 
| 1771 | 
            +
                        # input)
         | 
| 1772 | 
            +
                        if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
         | 
| 1773 | 
            +
                            input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
         | 
| 1774 | 
            +
                        # 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
         | 
| 1775 | 
            +
                        # input_ids based on the past_length.
         | 
| 1776 | 
            +
                        elif past_length < input_ids.shape[1]:
         | 
| 1777 | 
            +
                            input_ids = input_ids[:, past_length:]
         | 
| 1778 | 
            +
                        # 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
         | 
| 1779 | 
            +
             | 
| 1780 | 
            +
                        # If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
         | 
| 1781 | 
            +
                        if (
         | 
| 1782 | 
            +
                            max_cache_length is not None
         | 
| 1783 | 
            +
                            and attention_mask is not None
         | 
| 1784 | 
            +
                            and cache_length + input_ids.shape[1] > max_cache_length
         | 
| 1785 | 
            +
                        ):
         | 
| 1786 | 
            +
                            attention_mask = attention_mask[:, -max_cache_length:]
         | 
| 1787 | 
            +
             | 
| 1788 | 
            +
                    position_ids = kwargs.get("position_ids", None)
         | 
| 1789 | 
            +
                    if attention_mask is not None and position_ids is None:
         | 
| 1790 | 
            +
                        # create position_ids on the fly for batch generation
         | 
| 1791 | 
            +
                        position_ids = attention_mask.long().cumsum(-1) - 1
         | 
| 1792 | 
            +
                        position_ids.masked_fill_(attention_mask == 0, 1)
         | 
| 1793 | 
            +
                        if past_key_values:
         | 
| 1794 | 
            +
                            position_ids = position_ids[:, -input_ids.shape[1] :]
         | 
| 1795 | 
            +
             | 
| 1796 | 
            +
                    # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
         | 
| 1797 | 
            +
                    if inputs_embeds is not None and past_key_values is None:
         | 
| 1798 | 
            +
                        model_inputs = {"inputs_embeds": inputs_embeds}
         | 
| 1799 | 
            +
                    else:
         | 
| 1800 | 
            +
                        model_inputs = {"input_ids": input_ids}
         | 
| 1801 | 
            +
             | 
| 1802 | 
            +
                    model_inputs.update(
         | 
| 1803 | 
            +
                        {
         | 
| 1804 | 
            +
                            "position_ids": position_ids,
         | 
| 1805 | 
            +
                            "past_key_values": past_key_values,
         | 
| 1806 | 
            +
                            "use_cache": kwargs.get("use_cache"),
         | 
| 1807 | 
            +
                            "attention_mask": attention_mask,
         | 
| 1808 | 
            +
                        }
         | 
| 1809 | 
            +
                    )
         | 
| 1810 | 
            +
                    return model_inputs
         | 
| 1811 | 
            +
             | 
| 1812 | 
            +
                @staticmethod
         | 
| 1813 | 
            +
                def _reorder_cache(past_key_values, beam_idx):
         | 
| 1814 | 
            +
                    reordered_past = ()
         | 
| 1815 | 
            +
                    for layer_past in past_key_values:
         | 
| 1816 | 
            +
                        reordered_past += (
         | 
| 1817 | 
            +
                            tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
         | 
| 1818 | 
            +
                        )
         | 
| 1819 | 
            +
                    return reordered_past
         | 
| 1820 | 
            +
             | 
| 1821 | 
            +
             | 
| 1822 | 
            +
            @add_start_docstrings(
         | 
| 1823 | 
            +
                """
         | 
| 1824 | 
            +
                The Arctic Model transformer with a sequence classification head on top (linear layer).
         | 
| 1825 | 
            +
             | 
| 1826 | 
            +
                [`ArcticForSequenceClassification`] uses the last token in order to do the classification, as other causal models
         | 
| 1827 | 
            +
                (e.g. GPT-2) do.
         | 
| 1828 | 
            +
             | 
| 1829 | 
            +
                Since it does classification on the last token, it requires to know the position of the last token. If a
         | 
| 1830 | 
            +
                `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
         | 
| 1831 | 
            +
                no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
         | 
| 1832 | 
            +
                padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
         | 
| 1833 | 
            +
                each row of the batch).
         | 
| 1834 | 
            +
                """,
         | 
| 1835 | 
            +
                ARCTIC_START_DOCSTRING,
         | 
| 1836 | 
            +
            )
         | 
| 1837 | 
            +
            # Copied from transformers.models.llama.modeling_llama.LlamaForSequenceClassification with Llama->Arctic, LLAMA->MIXTRAL
         | 
| 1838 | 
            +
            class ArcticForSequenceClassification(ArcticPreTrainedModel):
         | 
| 1839 | 
            +
                def __init__(self, config):
         | 
| 1840 | 
            +
                    super().__init__(config)
         | 
| 1841 | 
            +
                    self.num_labels = config.num_labels
         | 
| 1842 | 
            +
                    self.model = ArcticModel(config)
         | 
| 1843 | 
            +
                    self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
         | 
| 1844 | 
            +
             | 
| 1845 | 
            +
                    # Initialize weights and apply final processing
         | 
| 1846 | 
            +
                    self.post_init()
         | 
| 1847 | 
            +
             | 
| 1848 | 
            +
                def get_input_embeddings(self):
         | 
| 1849 | 
            +
                    return self.model.embed_tokens
         | 
| 1850 | 
            +
             | 
| 1851 | 
            +
                def set_input_embeddings(self, value):
         | 
| 1852 | 
            +
                    self.model.embed_tokens = value
         | 
| 1853 | 
            +
             | 
| 1854 | 
            +
                @add_start_docstrings_to_model_forward(MIXTRAL_INPUTS_DOCSTRING)
         | 
| 1855 | 
            +
                def forward(
         | 
| 1856 | 
            +
                    self,
         | 
| 1857 | 
            +
                    input_ids: torch.LongTensor = None,
         | 
| 1858 | 
            +
                    attention_mask: Optional[torch.Tensor] = None,
         | 
| 1859 | 
            +
                    position_ids: Optional[torch.LongTensor] = None,
         | 
| 1860 | 
            +
                    past_key_values: Optional[List[torch.FloatTensor]] = None,
         | 
| 1861 | 
            +
                    inputs_embeds: Optional[torch.FloatTensor] = None,
         | 
| 1862 | 
            +
                    labels: Optional[torch.LongTensor] = None,
         | 
| 1863 | 
            +
                    use_cache: Optional[bool] = None,
         | 
| 1864 | 
            +
                    output_attentions: Optional[bool] = None,
         | 
| 1865 | 
            +
                    output_hidden_states: Optional[bool] = None,
         | 
| 1866 | 
            +
                    return_dict: Optional[bool] = None,
         | 
| 1867 | 
            +
                ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
         | 
| 1868 | 
            +
                    r"""
         | 
| 1869 | 
            +
                    labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
         | 
| 1870 | 
            +
                        Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
         | 
| 1871 | 
            +
                        config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
         | 
| 1872 | 
            +
                        `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
         | 
| 1873 | 
            +
                    """
         | 
| 1874 | 
            +
                    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
         | 
| 1875 | 
            +
             | 
| 1876 | 
            +
                    transformer_outputs = self.model(
         | 
| 1877 | 
            +
                        input_ids,
         | 
| 1878 | 
            +
                        attention_mask=attention_mask,
         | 
| 1879 | 
            +
                        position_ids=position_ids,
         | 
| 1880 | 
            +
                        past_key_values=past_key_values,
         | 
| 1881 | 
            +
                        inputs_embeds=inputs_embeds,
         | 
| 1882 | 
            +
                        use_cache=use_cache,
         | 
| 1883 | 
            +
                        output_attentions=output_attentions,
         | 
| 1884 | 
            +
                        output_hidden_states=output_hidden_states,
         | 
| 1885 | 
            +
                        return_dict=return_dict,
         | 
| 1886 | 
            +
                    )
         | 
| 1887 | 
            +
                    hidden_states = transformer_outputs[0]
         | 
| 1888 | 
            +
                    logits = self.score(hidden_states)
         | 
| 1889 | 
            +
             | 
| 1890 | 
            +
                    if input_ids is not None:
         | 
| 1891 | 
            +
                        batch_size = input_ids.shape[0]
         | 
| 1892 | 
            +
                    else:
         | 
| 1893 | 
            +
                        batch_size = inputs_embeds.shape[0]
         | 
| 1894 | 
            +
             | 
| 1895 | 
            +
                    if self.config.pad_token_id is None and batch_size != 1:
         | 
| 1896 | 
            +
                        raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
         | 
| 1897 | 
            +
                    if self.config.pad_token_id is None:
         | 
| 1898 | 
            +
                        sequence_lengths = -1
         | 
| 1899 | 
            +
                    else:
         | 
| 1900 | 
            +
                        if input_ids is not None:
         | 
| 1901 | 
            +
                            # if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
         | 
| 1902 | 
            +
                            sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
         | 
| 1903 | 
            +
                            sequence_lengths = sequence_lengths % input_ids.shape[-1]
         | 
| 1904 | 
            +
                            sequence_lengths = sequence_lengths.to(logits.device)
         | 
| 1905 | 
            +
                        else:
         | 
| 1906 | 
            +
                            sequence_lengths = -1
         | 
| 1907 | 
            +
             | 
| 1908 | 
            +
                    pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
         | 
| 1909 | 
            +
             | 
| 1910 | 
            +
                    loss = None
         | 
| 1911 | 
            +
                    if labels is not None:
         | 
| 1912 | 
            +
                        labels = labels.to(logits.device)
         | 
| 1913 | 
            +
                        if self.config.problem_type is None:
         | 
| 1914 | 
            +
                            if self.num_labels == 1:
         | 
| 1915 | 
            +
                                self.config.problem_type = "regression"
         | 
| 1916 | 
            +
                            elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
         | 
| 1917 | 
            +
                                self.config.problem_type = "single_label_classification"
         | 
| 1918 | 
            +
                            else:
         | 
| 1919 | 
            +
                                self.config.problem_type = "multi_label_classification"
         | 
| 1920 | 
            +
             | 
| 1921 | 
            +
                        if self.config.problem_type == "regression":
         | 
| 1922 | 
            +
                            loss_fct = MSELoss()
         | 
| 1923 | 
            +
                            if self.num_labels == 1:
         | 
| 1924 | 
            +
                                loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
         | 
| 1925 | 
            +
                            else:
         | 
| 1926 | 
            +
                                loss = loss_fct(pooled_logits, labels)
         | 
| 1927 | 
            +
                        elif self.config.problem_type == "single_label_classification":
         | 
| 1928 | 
            +
                            loss_fct = CrossEntropyLoss()
         | 
| 1929 | 
            +
                            loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
         | 
| 1930 | 
            +
                        elif self.config.problem_type == "multi_label_classification":
         | 
| 1931 | 
            +
                            loss_fct = BCEWithLogitsLoss()
         | 
| 1932 | 
            +
                            loss = loss_fct(pooled_logits, labels)
         | 
| 1933 | 
            +
                    if not return_dict:
         | 
| 1934 | 
            +
                        output = (pooled_logits,) + transformer_outputs[1:]
         | 
| 1935 | 
            +
                        return ((loss,) + output) if loss is not None else output
         | 
| 1936 | 
            +
             | 
| 1937 | 
            +
                    return SequenceClassifierOutputWithPast(
         | 
| 1938 | 
            +
                        loss=loss,
         | 
| 1939 | 
            +
                        logits=pooled_logits,
         | 
| 1940 | 
            +
                        past_key_values=transformer_outputs.past_key_values,
         | 
| 1941 | 
            +
                        hidden_states=transformer_outputs.hidden_states,
         | 
| 1942 | 
            +
                        attentions=transformer_outputs.attentions,
         | 
| 1943 | 
            +
                    )
         | 
    	
        tokenization_arctic.py
    ADDED
    
    | @@ -0,0 +1,57 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            """Tokenization classes for Arctic."""
         | 
| 2 | 
            +
             | 
| 3 | 
            +
            from typing import Any, Dict, Optional
         | 
| 4 | 
            +
             | 
| 5 | 
            +
            from transformers.models.llama import LlamaTokenizer
         | 
| 6 | 
            +
             | 
| 7 | 
            +
             | 
| 8 | 
            +
            class ArcticTokenizer(LlamaTokenizer):
         | 
| 9 | 
            +
             | 
| 10 | 
            +
                def __init__(
         | 
| 11 | 
            +
                    self,
         | 
| 12 | 
            +
                    vocab_file,
         | 
| 13 | 
            +
                    unk_token="<unk>",
         | 
| 14 | 
            +
                    bos_token="<s>",
         | 
| 15 | 
            +
                    eos_token="</s>",
         | 
| 16 | 
            +
                    pad_token=None,
         | 
| 17 | 
            +
                    sp_model_kwargs: Optional[Dict[str, Any]] = None,
         | 
| 18 | 
            +
                    add_bos_token=True,
         | 
| 19 | 
            +
                    add_eos_token=False,
         | 
| 20 | 
            +
                    clean_up_tokenization_spaces=False,
         | 
| 21 | 
            +
                    use_default_system_prompt=False,
         | 
| 22 | 
            +
                    spaces_between_special_tokens=False,
         | 
| 23 | 
            +
                    legacy=False,
         | 
| 24 | 
            +
                    add_prefix_space=True,
         | 
| 25 | 
            +
                    **kwargs,
         | 
| 26 | 
            +
                ):
         | 
| 27 | 
            +
                    # Same as LlamaTokenizer except default legacy=False.
         | 
| 28 | 
            +
                    super().__init__(
         | 
| 29 | 
            +
                        vocab_file,
         | 
| 30 | 
            +
                        bos_token=bos_token,
         | 
| 31 | 
            +
                        eos_token=eos_token,
         | 
| 32 | 
            +
                        unk_token=unk_token,
         | 
| 33 | 
            +
                        pad_token=pad_token,
         | 
| 34 | 
            +
                        sp_model_kwargs=sp_model_kwargs,
         | 
| 35 | 
            +
                        add_bos_token=add_bos_token,
         | 
| 36 | 
            +
                        add_eos_token=add_eos_token,
         | 
| 37 | 
            +
                        clean_up_tokenization_spaces=clean_up_tokenization_spaces,
         | 
| 38 | 
            +
                        use_default_system_prompt=use_default_system_prompt,
         | 
| 39 | 
            +
                        spaces_between_special_tokens=spaces_between_special_tokens,
         | 
| 40 | 
            +
                        legacy=legacy,
         | 
| 41 | 
            +
                        add_prefix_space=add_prefix_space,
         | 
| 42 | 
            +
                        **kwargs,
         | 
| 43 | 
            +
                    )
         | 
| 44 | 
            +
             | 
| 45 | 
            +
                @property
         | 
| 46 | 
            +
                def default_chat_template(self):
         | 
| 47 | 
            +
                    """
         | 
| 48 | 
            +
                    This template formats inputs in the standard Arctic format.
         | 
| 49 | 
            +
                    """
         | 
| 50 | 
            +
                    return (
         | 
| 51 | 
            +
                        "{% for message in messages %}"
         | 
| 52 | 
            +
                        "{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}"
         | 
| 53 | 
            +
                        "{% endfor %}"
         | 
| 54 | 
            +
                        "{% if add_generation_prompt %}"
         | 
| 55 | 
            +
                        "{{ '<|im_start|>assistant\n' }}"
         | 
| 56 | 
            +
                        "{% endif %}"
         | 
| 57 | 
            +
                    )
         | 
    	
        tokenizer_config.json
    CHANGED
    
    | @@ -47,6 +47,9 @@ | |
| 47 | 
             
                "<s>",
         | 
| 48 | 
             
                "</s>"
         | 
| 49 | 
             
              ],
         | 
|  | |
|  | |
|  | |
| 50 | 
             
              "bos_token": "<|im_start|>",
         | 
| 51 | 
             
              "chat_template": "{% for message in messages %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}",
         | 
| 52 | 
             
              "clean_up_tokenization_spaces": false,
         | 
|  | |
| 47 | 
             
                "<s>",
         | 
| 48 | 
             
                "</s>"
         | 
| 49 | 
             
              ],
         | 
| 50 | 
            +
              "auto_map": {
         | 
| 51 | 
            +
                "AutoTokenizer": ["tokenization_arctic.ArcticTokenizer", null]
         | 
| 52 | 
            +
              },
         | 
| 53 | 
             
              "bos_token": "<|im_start|>",
         | 
| 54 | 
             
              "chat_template": "{% for message in messages %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}",
         | 
| 55 | 
             
              "clean_up_tokenization_spaces": false,
         | 

 
		