--- tags: - spacy - token-classification - named-entity-recognition language: - en model-index: - name: en_Medical_Custom_ner results: - task: name: NER type: token-classification metrics: - name: NER Precision type: precision value: 0.9538461538 - name: NER Recall type: recall value: 0.9763779528 - name: NER F Score type: f_score value: 0.9649805447 library_name: spacy pipeline_tag: token-classification --- | Feature | Description | | --- | --- | | **Name** | `en_Medical_Custom_ner` | | **Version** | `0.0.0` | | **spaCy** | `>=3.6.1,<3.7.0` | | **Default Pipeline** | `tok2vec`, `ner` | | **Components** | `tok2vec`, `ner` | | **Vectors** | 514157 keys, 514157 unique vectors (300 dimensions) | | **Sources** | n/a | | **License** | n/a | | **Author** | [n/a]() | ### Label Scheme
View label scheme (3 labels for 1 components) | Component | Labels | | --- | --- | | **`ner`** | `MEDICALCONDITION`, `MEDICINE`, `PATHOGEN` |
### Accuracy | Type | Score | | --- | --- | | `ENTS_F` | 96.50 | | `ENTS_P` | 95.38 | | `ENTS_R` | 97.64 | | `TOK2VEC_LOSS` | 8886.35 | | `NER_LOSS` | 41564.56 |