--- license: mit datasets: - Slim205/Barka_data_2B language: - ar base_model: - google/gemma-2-2b-it --- ![Alt text](photo.png) # Welcome to Barka-2b-it : The best 2B Arabic LLM # Motivation : The goal of the project was to adapt large language models for the Arabic language and create a new state-of-the-art Arabic LLM. Due to the scarcity of Arabic instruction fine-tuning data, not many LLMs have been trained specifically in Arabic, which is surprising given the large number of Arabic speakers. Our final model was trained on a high-quality instruction fine-tuning (IFT) dataset, generated synthetically and then evaluated using the Hugging Face Arabic leaderboard. # Training : This model is the 2B version. It was trained for 2 days on 1 A100 GPU using LoRA with a rank of 128, a learning rate of 1e-4, and a cosine learning rate schedule. # Evaluation : My model is now on the Arabic leaderboard. | Metric | Slim205/Barka-2b-it | |----------------------|---------------------| | Average | 46.98 | | ACVA | 39.5 | | AlGhafa | 46.5 | | MMLU | 37.06 | | EXAMS | 38.73 | | ARC Challenge | 35.78 | | ARC Easy | 36.97 | | BOOLQ | 73.77 | | COPA | 50 | | HELLAWSWAG | 28.98 | | OPENBOOK QA | 43.84 | | PIQA | 56.36 | | RACE | 36.19 | | SCIQ | 55.78 | | TOXIGEN | 78.29 | Please refer to https://github.com/Slim205/Arabicllm/ for more details. # Using the Model The model uses `transformers` to generate responses based on the provided inputs. Here’s an example code to use the model: ```python from transformers import AutoTokenizer, AutoModelForCausalLM from peft import PeftModel import torch model_id = "google/gemma-2-2b-it" peft_model_id = "Slim205/Barka-2b-it" model = AutoModelForCausalLM.from_pretrained(model_id).to("cuda") tokenizer = AutoTokenizer.from_pretrained("Slim205/Barka-2b-it") model1 = PeftModel.from_pretrained(model, peft_model_id) input_text = "ما هي عاصمة تونس؟" # "What is the capital of Tunisia?" chat = [ { "role": "user", "content": input_text }, ] prompt = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True) inputs = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt") outputs = model.generate( input_ids=inputs.to(model.device), max_new_tokens=32, top_p=0.9, do_sample=True ) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` ``` user ما هي عاصمة تونس؟ model عاصمة تونس هي تونس. يشار إليها عادة باسم مدينة تونس. المدينة لديها حوالي 2،500،000 نسمة ``` # Feel free to use this model and send me your feedback. Together, we can advance Arabic LLM development!