--- pipeline_tag: image-text-to-text library_name: transformers license: mit --- # Skywork-R1V
Introduction Image
## 📖 [Technical Report](https://github.com/SkyworkAI/Skywork-R1V/blob/main/Skywork_R1V.pdf) | 💻 [GitHub](https://github.com/SkyworkAI/Skywork-R1V) | 🌐 [ModelScope](https://modelscope.cn/models/Skywork/Skywork-R1V-38B)
[![GitHub Stars](https://img.shields.io/github/stars/SkyworkAI/Skywork-R1V)](https://github.com/SkyworkAI/Skywork-R1V/stargazers) [![GitHub Forks](https://img.shields.io/github/forks/SkyworkAI/Skywork-R1V)](https://github.com/SkyworkAI/Skywork-R1V/fork)
## 1. Model Introduction | Model Name | Vision Encoder | Language Model | HF Link | | ---------------------- | -------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------- | ------------ | | Skywork-R1V-38B | [InternViT-6B-448px-V2_5](https://huggingface.co/OpenGVLab/InternViT-6B-448px-V2_5) | [deepseek-ai/DeepSeek-R1-Distill-Qwen-32B](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-32B) | [🤗 Link](#) | | Skywork-R1V-38B-qwq | [InternViT-6B-448px-V2_5](https://huggingface.co/OpenGVLab/InternViT-6B-448px-V2_5) | [Qwen/QwQ-32B](https://huggingface.co/Qwen/QwQ-32B) | - | ## 2. Feature - **Visual Chain-of-Thought**: Enables multi-step logical reasoning on visual inputs, breaking down complex image-based problems into manageable steps. - **Mathematical & Scientific Analysis**: Capable of solving visual math problems and interpreting scientific/medical imagery with high precision. - **Cross-Modal Understanding**: Seamlessly integrates text and images for richer, context-aware comprehension. ## 3. Evaluation

Comparison with Larger-Scale Open-Source and Closed-Source Models
Benchmark LLM VLM
QwQ-32B-Preview InternVL-2.5-38B VILA 1.5-40B InternVL2-40B Skywork-R1V-38B
Reasoning MATH-500 90.6 - - - 94.0
AIME 2024 50.0 - - - 72.0
GPQA 54.5 - - - 61.6
Vision MathVista(mini) - 71.9 49.5 63.7 67.5
MMMU(Val) - 63.9 55.1 55.2 69.0


Evaluation results of state-of-the-art LLMs and VLMs
Vision Reasoning Vision
MATH-500 AIME 2024 GPQA MathVista(mini) MMMU(Val)
pass@1 pass@1 pass@1 pass@1 pass@1
Qwen2.5-72B-Instruct 80.0 23.3 49.0 - -
Deepseek V3 90.2 39.2 59.1 - -
Deepseek R1 97.3 79.8 71.5 - -
Claude 3.5 Sonnet 78.3 16.0 65.0 65.3 66.4
GPT-4o 74.6 9.3 49.9 63.8 69.1
Kimi k1.5 96.2 77.5 - 74.9 70.0
Qwen2.5-VL-72B-Instruct - - - 74.8 70.2
LLaVA-Onevision-72B - - - 67.5 56.8
InternVL2-Llama3-76B - - - 65.5 62.7
InternVL2.5-78B - - - 72.3 70.1
Skywork-R1V-38B 94.0 72.0 61.6 67.5 69.0
skywork_r1v_eval
--- ## 4. Usage ### 1. Clone the Repository ```shell git clone https://github.com/SkyworkAI/Skywork-R1V.git cd skywork-r1v/inference ``` ### 2. Set Up the Environment ```shell conda create -n r1-v python=3.10 conda activate r1-v bash setup.sh ``` ### 3. Run the Inference Script ```shell CUDA_VISIBLE_DEVICES="0,1" python inference_with_transformers.py \ --model_path path \ --image_paths image1_path \ --question "your question" ``` --- ## 5. Citation If you use Skywork-R1V in your research, please cite: ``` @misc{peng2025skyworkr1vpioneeringmultimodal, title={Skywork R1V: Pioneering Multimodal Reasoning with Chain-of-Thought}, author={Yi Peng and Chris and Xiaokun Wang and Yichen Wei and Jiangbo Pei and Weijie Qiu and Ai Jian and Yunzhuo Hao and Jiachun Pan and Tianyidan Xie and Li Ge and Rongxian Zhuang and Xuchen Song and Yang Liu and Yahui Zhou}, year={2025}, eprint={2504.05599}, archivePrefix={arXiv}, primaryClass={cs.CV}, url={https://arxiv.org/abs/2504.05599}, } ``` *This project is released under an open-source license.* ## Star History [![Star History Chart](https://api.star-history.com/svg?repos=SkyworkAI/Skywork-R1V&type=Date)](https://www.star-history.com/#SkyworkAI/Skywork-R1V&Date) ```