diff --git a/model_hubs/Skywork-13B-Base-3T/config.json b/model_hubs/Skywork-13B-Base-3T/config.json deleted file mode 100644 index 176a4ca6fc2d7e436819a6c762c7967edb3a7b3f..0000000000000000000000000000000000000000 --- a/model_hubs/Skywork-13B-Base-3T/config.json +++ /dev/null @@ -1,27 +0,0 @@ -{ - "architectures": [ - "SkyworkForCausalLM" - ], - "auto_map": { - "AutoConfig": "configuration_skywork.SkyworkConfig", - "AutoModelForCausalLM": "modeling_skywork.SkyworkForCausalLM" - }, - "bos_token_id": 1, - "eos_token_id": 2, - "pad_token_id": 0, - "hidden_act": "silu", - "hidden_size": 4608, - "initializer_range": 0.01, - "intermediate_size": 12288, - "max_position_embeddings": 131072, - "model_type": "skywork", - "num_attention_heads": 36, - "num_hidden_layers": 52, - "num_key_value_heads": 36, - "rms_norm_eps": 1e-06, - "tie_word_embeddings": false, - "torch_dtype": "bfloat16", - "transformers_version": "4.33.1", - "use_cache": true, - "vocab_size": 65519 - } \ No newline at end of file diff --git a/model_hubs/Skywork-13B-Base-3T/configuration_skywork.py b/model_hubs/Skywork-13B-Base-3T/configuration_skywork.py deleted file mode 100644 index dbbad8ae1e08d431a14c5de719267629feb4cd5a..0000000000000000000000000000000000000000 --- a/model_hubs/Skywork-13B-Base-3T/configuration_skywork.py +++ /dev/null @@ -1,89 +0,0 @@ -# Copyright (c) SkyworkAI and the HuggingFace Inc. team. All rights reserved. -# This code is built upon Huggingface's transformers repository. - - -from transformers.configuration_utils import PretrainedConfig -from transformers.utils import logging - - -logger = logging.get_logger(__name__) - -LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP = {} - - -class SkyworkConfig(PretrainedConfig): - - model_type = "skywork" - keys_to_ignore_at_inference = ["past_key_values"] - - def __init__( - self, - vocab_size=32000, - hidden_size=4096, - intermediate_size=11008, - num_hidden_layers=32, - num_attention_heads=32, - num_key_value_heads=None, - hidden_act="silu", - max_position_embeddings=2048, - initializer_range=0.02, - rms_norm_eps=1e-6, - use_cache=True, - pad_token_id=None, - bos_token_id=1, - eos_token_id=2, - pretraining_tp=1, - tie_word_embeddings=False, - rope_theta=10000.0, - rope_scaling=None, - **kwargs, - ): - self.vocab_size = vocab_size - self.max_position_embeddings = max_position_embeddings - self.hidden_size = hidden_size - self.intermediate_size = intermediate_size - self.num_hidden_layers = num_hidden_layers - self.num_attention_heads = num_attention_heads - - # for backward compatibility - if num_key_value_heads is None: - num_key_value_heads = num_attention_heads - - self.num_key_value_heads = num_key_value_heads - self.hidden_act = hidden_act - self.initializer_range = initializer_range - self.rms_norm_eps = rms_norm_eps - self.pretraining_tp = pretraining_tp - self.use_cache = use_cache - self.rope_theta = rope_theta - self.rope_scaling = rope_scaling - self._rope_scaling_validation() - - super().__init__( - pad_token_id=pad_token_id, - bos_token_id=bos_token_id, - eos_token_id=eos_token_id, - tie_word_embeddings=tie_word_embeddings, - **kwargs, - ) - - def _rope_scaling_validation(self): - """ - Validate the `rope_scaling` configuration. - """ - if self.rope_scaling is None: - return - - if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2: - raise ValueError( - "`rope_scaling` must be a dictionary with with two fields, `type` and `factor`, " - f"got {self.rope_scaling}" - ) - rope_scaling_type = self.rope_scaling.get("type", None) - rope_scaling_factor = self.rope_scaling.get("factor", None) - if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic", "ntk"]: - raise ValueError( - f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}" - ) - if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor <= 1.0: - raise ValueError(f"`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}") diff --git a/model_hubs/Skywork-13B-Base-3T/generation_config.json b/model_hubs/Skywork-13B-Base-3T/generation_config.json deleted file mode 100644 index aece903f676603332b5bc1b1a29d6e44a8c02464..0000000000000000000000000000000000000000 --- a/model_hubs/Skywork-13B-Base-3T/generation_config.json +++ /dev/null @@ -1,10 +0,0 @@ -{ - "bos_token_id": 1, - "do_sample": true, - "eos_token_id": 2, - "max_length": 4096, - "pad_token_id": 0, - "temperature": 0.6, - "top_p": 0.9, - "transformers_version": "4.33.1" -} \ No newline at end of file diff --git a/model_hubs/Skywork-13B-Base-3T/modeling_skywork.py b/model_hubs/Skywork-13B-Base-3T/modeling_skywork.py deleted file mode 100644 index 93d2898e0e7d379dc6883c4e34043e537689b8bb..0000000000000000000000000000000000000000 --- a/model_hubs/Skywork-13B-Base-3T/modeling_skywork.py +++ /dev/null @@ -1,911 +0,0 @@ -# Copyright (c) SkyworkAI and the HuggingFace Inc. team. All rights reserved. -# This code is built upon Huggingface's transformers repository. - -import math -from typing import List, Optional, Tuple, Union - -import torch -import torch.nn.functional as F -import torch.utils.checkpoint -from torch import nn -from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss - -from transformers.activations import ACT2FN -from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast, SequenceClassifierOutputWithPast -from transformers.modeling_utils import PreTrainedModel -from transformers.utils import logging -from .configuration_skywork import SkyworkConfig - - -logger = logging.get_logger(__name__) - -_CONFIG_FOR_DOC = "SkyworkConfig" - - -# Copied from transformers.models.bart.modeling_bart._make_causal_mask -def _make_causal_mask( - input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0 -): - """ - Make causal mask used for bi-directional self-attention. - """ - bsz, tgt_len = input_ids_shape - mask = torch.full((tgt_len, tgt_len), torch.finfo(dtype).min, device=device) - mask_cond = torch.arange(mask.size(-1), device=device) - mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0) - mask = mask.to(dtype) - - if past_key_values_length > 0: - mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1) - return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length) - - -# Copied from transformers.models.bart.modeling_bart._expand_mask -def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None): - """ - Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`. - """ - bsz, src_len = mask.size() - tgt_len = tgt_len if tgt_len is not None else src_len - - expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype) - - inverted_mask = 1.0 - expanded_mask - - return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min) - - -class SkyworkRMSNorm(nn.Module): - def __init__(self, hidden_size, eps=1e-6): - """ - SkyworkRMSNorm is equivalent to T5LayerNorm - """ - super().__init__() - self.weight = nn.Parameter(torch.ones(hidden_size)) - self.variance_epsilon = eps - - def forward(self, hidden_states): - input_dtype = hidden_states.dtype - hidden_states = hidden_states.to(torch.float32) - variance = hidden_states.pow(2).mean(-1, keepdim=True) - hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) - return self.weight * hidden_states.to(input_dtype) - - -class SkyworkRotaryEmbedding(torch.nn.Module): - def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None): - super().__init__() - - self.dim = dim - self.max_position_embeddings = max_position_embeddings - self.base = base - inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim)) - self.register_buffer("inv_freq", inv_freq, persistent=False) - - # Build here to make `torch.jit.trace` work. - self._set_cos_sin_cache( - seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype() - ) - - def _set_cos_sin_cache(self, seq_len, device, dtype): - self.max_seq_len_cached = seq_len - t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype) - - freqs = torch.einsum("i,j->ij", t, self.inv_freq) - # Different from paper, but it uses a different permutation in order to obtain the same calculation - emb = torch.cat((freqs, freqs), dim=-1) - self.register_buffer("cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False) - self.register_buffer("sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False) - - def forward(self, x, seq_len=None): - # x: [bs, num_attention_heads, seq_len, head_size] - if seq_len > self.max_seq_len_cached: - self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype) - - return ( - self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype), - self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype), - ) - - -class SkyworkLinearScalingRotaryEmbedding(SkyworkRotaryEmbedding): - """SkyworkRotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev""" - - def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0): - self.scaling_factor = scaling_factor - super().__init__(dim, max_position_embeddings, base, device) - - def _set_cos_sin_cache(self, seq_len, device, dtype): - self.max_seq_len_cached = seq_len - t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype) - t = t / self.scaling_factor - - freqs = torch.einsum("i,j->ij", t, self.inv_freq) - # Different from paper, but it uses a different permutation in order to obtain the same calculation - emb = torch.cat((freqs, freqs), dim=-1) - self.register_buffer("cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False) - self.register_buffer("sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False) - - -class SkyworkDynamicNTKScalingRotaryEmbedding(SkyworkRotaryEmbedding): - """SkyworkRotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla""" - - def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0): - self.scaling_factor = scaling_factor - super().__init__(dim, max_position_embeddings, base, device) - - def _set_cos_sin_cache(self, seq_len, device, dtype): - self.max_seq_len_cached = seq_len - - if seq_len > self.max_position_embeddings: - base = self.base * ( - (self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1) - ) ** (self.dim / (self.dim - 2)) - inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim)) - self.register_buffer("inv_freq", inv_freq, persistent=False) - - t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype) - - freqs = torch.einsum("i,j->ij", t, self.inv_freq) - # Different from paper, but it uses a different permutation in order to obtain the same calculation - emb = torch.cat((freqs, freqs), dim=-1) - self.register_buffer("cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False) - self.register_buffer("sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False) - - - -class SkyworkNTKScalingRotaryEmbedding(torch.nn.Module): - def __init__(self, dim, max_position_embeddings=2048, base=10000, scaling_factor=100, device=None): - super().__init__() - - self.dim = dim - self.max_position_embeddings = max_position_embeddings - self.base = base * scaling_factor - inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim)) - self.register_buffer("inv_freq", inv_freq, persistent=False) - - # Build here to make `torch.jit.trace` work. - self._set_cos_sin_cache( - seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype() - ) - - def _set_cos_sin_cache(self, seq_len, device, dtype): - self.max_seq_len_cached = seq_len - t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype) - freqs = torch.einsum("i,j->ij", t, self.inv_freq) - emb = torch.cat((freqs, freqs), dim=-1) - self.register_buffer("cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False) - self.register_buffer("sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False) - - def forward(self, x, seq_len=None): - if seq_len > self.max_seq_len_cached: - self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype) - - return ( - self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype), - self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype), - ) - -def rotate_half(x): - """Rotates half the hidden dims of the input.""" - x1 = x[..., : x.shape[-1] // 2] - x2 = x[..., x.shape[-1] // 2 :] - return torch.cat((-x2, x1), dim=-1) - - -def apply_rotary_pos_emb(q, k, cos, sin, position_ids): - # The first two dimensions of cos and sin are always 1, so we can `squeeze` them. - cos = cos.squeeze(1).squeeze(0) # [seq_len, dim] - sin = sin.squeeze(1).squeeze(0) # [seq_len, dim] - cos = cos[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim] - sin = sin[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim] - q_embed = (q * cos) + (rotate_half(q) * sin) - k_embed = (k * cos) + (rotate_half(k) * sin) - return q_embed, k_embed - - -class SkyworkMLP(nn.Module): - def __init__(self, config): - super().__init__() - self.config = config - self.hidden_size = config.hidden_size - self.intermediate_size = config.intermediate_size - self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) - self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) - self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False) - self.act_fn = ACT2FN[config.hidden_act] - - def forward(self, x): - if self.config.pretraining_tp > 1: - slice = self.intermediate_size // self.config.pretraining_tp - gate_proj_slices = self.gate_proj.weight.split(slice, dim=0) - up_proj_slices = self.up_proj.weight.split(slice, dim=0) - down_proj_slices = self.down_proj.weight.split(slice, dim=1) - - gate_proj = torch.cat( - [F.linear(x, gate_proj_slices[i]) for i in range(self.config.pretraining_tp)], dim=-1 - ) - up_proj = torch.cat([F.linear(x, up_proj_slices[i]) for i in range(self.config.pretraining_tp)], dim=-1) - - intermediate_states = (self.act_fn(gate_proj) * up_proj).split(slice, dim=2) - down_proj = [ - F.linear(intermediate_states[i], down_proj_slices[i]) for i in range(self.config.pretraining_tp) - ] - down_proj = sum(down_proj) - else: - down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) - - return down_proj - - -def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: - """ - This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, - num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) - """ - batch, num_key_value_heads, slen, head_dim = hidden_states.shape - if n_rep == 1: - return hidden_states - hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) - return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) - - -class SkyworkAttention(nn.Module): - """Multi-headed attention from 'Attention Is All You Need' paper""" - - def __init__(self, config: SkyworkConfig): - super().__init__() - self.config = config - self.hidden_size = config.hidden_size - self.num_heads = config.num_attention_heads - self.head_dim = self.hidden_size // self.num_heads - self.num_key_value_heads = config.num_key_value_heads - self.num_key_value_groups = self.num_heads // self.num_key_value_heads - self.max_position_embeddings = config.max_position_embeddings - self.rope_theta = config.rope_theta - - if (self.head_dim * self.num_heads) != self.hidden_size: - raise ValueError( - f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}" - f" and `num_heads`: {self.num_heads})." - ) - self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False) - self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False) - self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False) - self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False) - self._init_rope() - - def _init_rope(self): - if self.config.rope_scaling is None: - self.rotary_emb = SkyworkRotaryEmbedding( - self.head_dim, - max_position_embeddings=self.max_position_embeddings, - base=self.rope_theta, - ) - else: - scaling_type = self.config.rope_scaling["type"] - scaling_factor = self.config.rope_scaling["factor"] - if scaling_type == "linear": - self.rotary_emb = SkyworkLinearScalingRotaryEmbedding( - self.head_dim, - max_position_embeddings=self.max_position_embeddings, - scaling_factor=scaling_factor, - base=self.rope_theta, - ) - elif scaling_type == "dynamic": - self.rotary_emb = SkyworkDynamicNTKScalingRotaryEmbedding( - self.head_dim, - max_position_embeddings=self.max_position_embeddings, - scaling_factor=scaling_factor, - base=self.rope_theta, - ) - elif scaling_type == "ntk": - self.rotary_emb = SkyworkNTKScalingRotaryEmbedding( - self.head_dim, - max_position_embeddings=self.max_position_embeddings, - scaling_factor=scaling_factor, - base=self.rope_theta, - ) - else: - raise ValueError(f"Unknown RoPE scaling type {scaling_type}") - print('-'*80) - print(f"USING COSTOM MODELING, scaling_type is {scaling_type}, scaling_factor is {scaling_factor}") - - def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): - return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() - - def forward( - self, - hidden_states: torch.Tensor, - attention_mask: Optional[torch.Tensor] = None, - position_ids: Optional[torch.LongTensor] = None, - past_key_value: Optional[Tuple[torch.Tensor]] = None, - output_attentions: bool = False, - use_cache: bool = False, - ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: - bsz, q_len, _ = hidden_states.size() - - if self.config.pretraining_tp > 1: - key_value_slicing = (self.num_key_value_heads * self.head_dim) // self.config.pretraining_tp - query_slices = self.q_proj.weight.split( - (self.num_heads * self.head_dim) // self.config.pretraining_tp, dim=0 - ) - key_slices = self.k_proj.weight.split(key_value_slicing, dim=0) - value_slices = self.v_proj.weight.split(key_value_slicing, dim=0) - - query_states = [F.linear(hidden_states, query_slices[i]) for i in range(self.config.pretraining_tp)] - query_states = torch.cat(query_states, dim=-1) - - key_states = [F.linear(hidden_states, key_slices[i]) for i in range(self.config.pretraining_tp)] - key_states = torch.cat(key_states, dim=-1) - - value_states = [F.linear(hidden_states, value_slices[i]) for i in range(self.config.pretraining_tp)] - value_states = torch.cat(value_states, dim=-1) - - else: - query_states = self.q_proj(hidden_states) - key_states = self.k_proj(hidden_states) - value_states = self.v_proj(hidden_states) - - query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) - key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) - value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) - - kv_seq_len = key_states.shape[-2] - if past_key_value is not None: - kv_seq_len += past_key_value[0].shape[-2] - cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) - query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) - - if past_key_value is not None: - # reuse k, v, self_attention - key_states = torch.cat([past_key_value[0], key_states], dim=2) - value_states = torch.cat([past_key_value[1], value_states], dim=2) - - past_key_value = (key_states, value_states) if use_cache else None - - # repeat k/v heads if n_kv_heads < n_heads - key_states = repeat_kv(key_states, self.num_key_value_groups) - value_states = repeat_kv(value_states, self.num_key_value_groups) - - attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim) - - if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len): - raise ValueError( - f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is" - f" {attn_weights.size()}" - ) - - if attention_mask is not None: - if attention_mask.size() != (bsz, 1, q_len, kv_seq_len): - raise ValueError( - f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}" - ) - attn_weights = attn_weights + attention_mask - - # upcast attention to fp32 - attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype) - attn_output = torch.matmul(attn_weights, value_states) - - if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim): - raise ValueError( - f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is" - f" {attn_output.size()}" - ) - - attn_output = attn_output.transpose(1, 2).contiguous() - attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) - - if self.config.pretraining_tp > 1: - attn_output = attn_output.split(self.hidden_size // self.config.pretraining_tp, dim=2) - o_proj_slices = self.o_proj.weight.split(self.hidden_size // self.config.pretraining_tp, dim=1) - attn_output = sum([F.linear(attn_output[i], o_proj_slices[i]) for i in range(self.config.pretraining_tp)]) - else: - attn_output = self.o_proj(attn_output) - - if not output_attentions: - attn_weights = None - - return attn_output, attn_weights, past_key_value - - -class SkyworkDecoderLayer(nn.Module): - def __init__(self, config: SkyworkConfig): - super().__init__() - self.hidden_size = config.hidden_size - self.self_attn = SkyworkAttention(config=config) - self.mlp = SkyworkMLP(config) - self.input_layernorm = SkyworkRMSNorm(config.hidden_size, eps=config.rms_norm_eps) - self.post_attention_layernorm = SkyworkRMSNorm(config.hidden_size, eps=config.rms_norm_eps) - - def forward( - self, - hidden_states: torch.Tensor, - attention_mask: Optional[torch.Tensor] = None, - position_ids: Optional[torch.LongTensor] = None, - past_key_value: Optional[Tuple[torch.Tensor]] = None, - output_attentions: Optional[bool] = False, - use_cache: Optional[bool] = False, - ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: - """ - Args: - hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` - attention_mask (`torch.FloatTensor`, *optional*): attention mask of size - `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. - output_attentions (`bool`, *optional*): - Whether or not to return the attentions tensors of all attention layers. See `attentions` under - returned tensors for more detail. - use_cache (`bool`, *optional*): - If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding - (see `past_key_values`). - past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states - """ - - residual = hidden_states - - hidden_states = self.input_layernorm(hidden_states) - - # Self Attention - hidden_states, self_attn_weights, present_key_value = self.self_attn( - hidden_states=hidden_states, - attention_mask=attention_mask, - position_ids=position_ids, - past_key_value=past_key_value, - output_attentions=output_attentions, - use_cache=use_cache, - ) - hidden_states = residual + hidden_states - - # Fully Connected - residual = hidden_states - hidden_states = self.post_attention_layernorm(hidden_states) - hidden_states = self.mlp(hidden_states) - hidden_states = residual + hidden_states - - outputs = (hidden_states,) - - if output_attentions: - outputs += (self_attn_weights,) - - if use_cache: - outputs += (present_key_value,) - - return outputs - -class SkyworkPreTrainedModel(PreTrainedModel): - config_class = SkyworkConfig - base_model_prefix = "model" - supports_gradient_checkpointing = True - _no_split_modules = ["SkyworkDecoderLayer"] - _skip_keys_device_placement = "past_key_values" - - def _init_weights(self, module): - std = self.config.initializer_range - if isinstance(module, nn.Linear): - module.weight.data.normal_(mean=0.0, std=std) - if module.bias is not None: - module.bias.data.zero_() - elif isinstance(module, nn.Embedding): - module.weight.data.normal_(mean=0.0, std=std) - if module.padding_idx is not None: - module.weight.data[module.padding_idx].zero_() - - def _set_gradient_checkpointing(self, module, value=False): - if isinstance(module, SkyworkModel): - module.gradient_checkpointing = value - -class SkyworkModel(SkyworkPreTrainedModel): - """ - Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`SkyworkDecoderLayer`] - - Args: - config: SkyworkConfig - """ - - def __init__(self, config: SkyworkConfig): - super().__init__(config) - self.padding_idx = config.pad_token_id - self.vocab_size = config.vocab_size - - self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) - self.layers = nn.ModuleList([SkyworkDecoderLayer(config) for _ in range(config.num_hidden_layers)]) - self.norm = SkyworkRMSNorm(config.hidden_size, eps=config.rms_norm_eps) - - self.gradient_checkpointing = False - # Initialize weights and apply final processing - self.post_init() - - def get_input_embeddings(self): - return self.embed_tokens - - def set_input_embeddings(self, value): - self.embed_tokens = value - - # Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask - def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length): - # create causal mask - # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] - combined_attention_mask = None - if input_shape[-1] > 1: - combined_attention_mask = _make_causal_mask( - input_shape, - inputs_embeds.dtype, - device=inputs_embeds.device, - past_key_values_length=past_key_values_length, - ) - - if attention_mask is not None: - # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] - expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to( - inputs_embeds.device - ) - combined_attention_mask = ( - expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask - ) - - return combined_attention_mask - - def forward( - self, - input_ids: torch.LongTensor = None, - attention_mask: Optional[torch.Tensor] = None, - position_ids: Optional[torch.LongTensor] = None, - past_key_values: Optional[List[torch.FloatTensor]] = None, - inputs_embeds: Optional[torch.FloatTensor] = None, - use_cache: Optional[bool] = None, - output_attentions: Optional[bool] = None, - output_hidden_states: Optional[bool] = None, - return_dict: Optional[bool] = None, - ) -> Union[Tuple, BaseModelOutputWithPast]: - output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions - output_hidden_states = ( - output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states - ) - use_cache = use_cache if use_cache is not None else self.config.use_cache - - return_dict = return_dict if return_dict is not None else self.config.use_return_dict - - # retrieve input_ids and inputs_embeds - if input_ids is not None and inputs_embeds is not None: - raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time") - elif input_ids is not None: - batch_size, seq_length = input_ids.shape - elif inputs_embeds is not None: - batch_size, seq_length, _ = inputs_embeds.shape - else: - raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds") - - seq_length_with_past = seq_length - past_key_values_length = 0 - - if past_key_values is not None: - past_key_values_length = past_key_values[0][0].shape[2] - seq_length_with_past = seq_length_with_past + past_key_values_length - - if position_ids is None: - device = input_ids.device if input_ids is not None else inputs_embeds.device - position_ids = torch.arange( - past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device - ) - position_ids = position_ids.unsqueeze(0).view(-1, seq_length) - else: - position_ids = position_ids.view(-1, seq_length).long() - - if inputs_embeds is None: - inputs_embeds = self.embed_tokens(input_ids) - # embed positions - if attention_mask is None: - attention_mask = torch.ones( - (batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device - ) - attention_mask = self._prepare_decoder_attention_mask( - attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length - ) - - hidden_states = inputs_embeds - - if self.gradient_checkpointing and self.training: - if use_cache: - logger.warning_once( - "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." - ) - use_cache = False - - # decoder layers - all_hidden_states = () if output_hidden_states else None - all_self_attns = () if output_attentions else None - next_decoder_cache = () if use_cache else None - - for idx, decoder_layer in enumerate(self.layers): - if output_hidden_states: - all_hidden_states += (hidden_states,) - - past_key_value = past_key_values[idx] if past_key_values is not None else None - - if self.gradient_checkpointing and self.training: - - def create_custom_forward(module): - def custom_forward(*inputs): - # None for past_key_value - return module(*inputs, past_key_value, output_attentions) - - return custom_forward - - layer_outputs = torch.utils.checkpoint.checkpoint( - create_custom_forward(decoder_layer), - hidden_states, - attention_mask, - position_ids, - ) - else: - layer_outputs = decoder_layer( - hidden_states, - attention_mask=attention_mask, - position_ids=position_ids, - past_key_value=past_key_value, - output_attentions=output_attentions, - use_cache=use_cache, - ) - - hidden_states = layer_outputs[0] - - if use_cache: - next_decoder_cache += (layer_outputs[2 if output_attentions else 1],) - - if output_attentions: - all_self_attns += (layer_outputs[1],) - - hidden_states = self.norm(hidden_states) - - # add hidden states from the last decoder layer - if output_hidden_states: - all_hidden_states += (hidden_states,) - - next_cache = next_decoder_cache if use_cache else None - if not return_dict: - return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None) - return BaseModelOutputWithPast( - last_hidden_state=hidden_states, - past_key_values=next_cache, - hidden_states=all_hidden_states, - attentions=all_self_attns, - ) - - -class SkyworkForCausalLM(SkyworkPreTrainedModel): - _tied_weights_keys = ["lm_head.weight"] - - def __init__(self, config): - super().__init__(config) - self.model = SkyworkModel(config) - self.vocab_size = config.vocab_size - self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) - - # Initialize weights and apply final processing - self.post_init() - - def get_input_embeddings(self): - return self.model.embed_tokens - - def set_input_embeddings(self, value): - self.model.embed_tokens = value - - def get_output_embeddings(self): - return self.lm_head - - def set_output_embeddings(self, new_embeddings): - self.lm_head = new_embeddings - - def set_decoder(self, decoder): - self.model = decoder - - def get_decoder(self): - return self.model - - def forward( - self, - input_ids: torch.LongTensor = None, - attention_mask: Optional[torch.Tensor] = None, - position_ids: Optional[torch.LongTensor] = None, - past_key_values: Optional[List[torch.FloatTensor]] = None, - inputs_embeds: Optional[torch.FloatTensor] = None, - labels: Optional[torch.LongTensor] = None, - use_cache: Optional[bool] = None, - output_attentions: Optional[bool] = None, - output_hidden_states: Optional[bool] = None, - return_dict: Optional[bool] = None, - ) -> Union[Tuple, CausalLMOutputWithPast]: - - output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions - output_hidden_states = ( - output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states - ) - return_dict = return_dict if return_dict is not None else self.config.use_return_dict - - # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) - outputs = self.model( - input_ids=input_ids, - attention_mask=attention_mask, - position_ids=position_ids, - past_key_values=past_key_values, - inputs_embeds=inputs_embeds, - use_cache=use_cache, - output_attentions=output_attentions, - output_hidden_states=output_hidden_states, - return_dict=return_dict, - ) - - hidden_states = outputs[0] - if self.config.pretraining_tp > 1: - lm_head_slices = self.lm_head.weight.split(self.vocab_size // self.config.pretraining_tp, dim=0) - logits = [F.linear(hidden_states, lm_head_slices[i]) for i in range(self.config.pretraining_tp)] - logits = torch.cat(logits, dim=-1) - else: - logits = self.lm_head(hidden_states) - logits = logits.float() - - loss = None - if labels is not None: - # Shift so that tokens < n predict n - shift_logits = logits[..., :-1, :].contiguous() - shift_labels = labels[..., 1:].contiguous() - # Flatten the tokens - loss_fct = CrossEntropyLoss() - shift_logits = shift_logits.view(-1, self.config.vocab_size) - shift_labels = shift_labels.view(-1) - # Enable model parallelism - shift_labels = shift_labels.to(shift_logits.device) - loss = loss_fct(shift_logits, shift_labels) - - if not return_dict: - output = (logits,) + outputs[1:] - return (loss,) + output if loss is not None else output - - return CausalLMOutputWithPast( - loss=loss, - logits=logits, - past_key_values=outputs.past_key_values, - hidden_states=outputs.hidden_states, - attentions=outputs.attentions, - ) - - def prepare_inputs_for_generation( - self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs - ): - if past_key_values: - input_ids = input_ids[:, -1:] - - position_ids = kwargs.get("position_ids", None) - if attention_mask is not None and position_ids is None: - # create position_ids on the fly for batch generation - position_ids = attention_mask.long().cumsum(-1) - 1 - position_ids.masked_fill_(attention_mask == 0, 1) - if past_key_values: - position_ids = position_ids[:, -1].unsqueeze(-1) - - # if `inputs_embeds` are passed, we only want to use them in the 1st generation step - if inputs_embeds is not None and past_key_values is None: - model_inputs = {"inputs_embeds": inputs_embeds} - else: - model_inputs = {"input_ids": input_ids} - - model_inputs.update( - { - "position_ids": position_ids, - "past_key_values": past_key_values, - "use_cache": kwargs.get("use_cache"), - "attention_mask": attention_mask, - } - ) - return model_inputs - - @staticmethod - def _reorder_cache(past_key_values, beam_idx): - reordered_past = () - for layer_past in past_key_values: - reordered_past += ( - tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past), - ) - return reordered_past - - -class SkyworkForSequenceClassification(SkyworkPreTrainedModel): - def __init__(self, config): - super().__init__(config) - self.num_labels = config.num_labels - self.model = SkyworkModel(config) - self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False) - - # Initialize weights and apply final processing - self.post_init() - - def get_input_embeddings(self): - return self.model.embed_tokens - - def set_input_embeddings(self, value): - self.model.embed_tokens = value - - def forward( - self, - input_ids: torch.LongTensor = None, - attention_mask: Optional[torch.Tensor] = None, - position_ids: Optional[torch.LongTensor] = None, - past_key_values: Optional[List[torch.FloatTensor]] = None, - inputs_embeds: Optional[torch.FloatTensor] = None, - labels: Optional[torch.LongTensor] = None, - use_cache: Optional[bool] = None, - output_attentions: Optional[bool] = None, - output_hidden_states: Optional[bool] = None, - return_dict: Optional[bool] = None, - ) -> Union[Tuple, SequenceClassifierOutputWithPast]: - - - return_dict = return_dict if return_dict is not None else self.config.use_return_dict - - transformer_outputs = self.model( - input_ids, - attention_mask=attention_mask, - position_ids=position_ids, - past_key_values=past_key_values, - inputs_embeds=inputs_embeds, - use_cache=use_cache, - output_attentions=output_attentions, - output_hidden_states=output_hidden_states, - return_dict=return_dict, - ) - hidden_states = transformer_outputs[0] - logits = self.score(hidden_states) - - if input_ids is not None: - batch_size = input_ids.shape[0] - else: - batch_size = inputs_embeds.shape[0] - - if self.config.pad_token_id is None and batch_size != 1: - raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.") - if self.config.pad_token_id is None: - sequence_lengths = -1 - else: - if input_ids is not None: - sequence_lengths = (torch.eq(input_ids, self.config.pad_token_id).long().argmax(-1) - 1).to( - logits.device - ) - else: - sequence_lengths = -1 - - pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths] - - loss = None - if labels is not None: - labels = labels.to(logits.device) - if self.config.problem_type is None: - if self.num_labels == 1: - self.config.problem_type = "regression" - elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): - self.config.problem_type = "single_label_classification" - else: - self.config.problem_type = "multi_label_classification" - - if self.config.problem_type == "regression": - loss_fct = MSELoss() - if self.num_labels == 1: - loss = loss_fct(pooled_logits.squeeze(), labels.squeeze()) - else: - loss = loss_fct(pooled_logits, labels) - elif self.config.problem_type == "single_label_classification": - loss_fct = CrossEntropyLoss() - loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1)) - elif self.config.problem_type == "multi_label_classification": - loss_fct = BCEWithLogitsLoss() - loss = loss_fct(pooled_logits, labels) - if not return_dict: - output = (pooled_logits,) + transformer_outputs[1:] - return ((loss,) + output) if loss is not None else output - - return SequenceClassifierOutputWithPast( - loss=loss, - logits=pooled_logits, - past_key_values=transformer_outputs.past_key_values, - hidden_states=transformer_outputs.hidden_states, - attentions=transformer_outputs.attentions, - ) diff --git a/model_hubs/Skywork-13B-Base-3T/pytorch_model-00001-of-00053.bin b/model_hubs/Skywork-13B-Base-3T/pytorch_model-00001-of-00053.bin deleted file mode 100644 index 9303b7bd1e0c4c1eed4bba66ac2ed298e222e707..0000000000000000000000000000000000000000 --- a/model_hubs/Skywork-13B-Base-3T/pytorch_model-00001-of-00053.bin +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:69626f67345dd2378ea1155f152804fb4886b151f2e43ebe3b2d6f33c80e606e -size 509630194 diff --git a/model_hubs/Skywork-13B-Base-3T/pytorch_model-00002-of-00053.bin b/model_hubs/Skywork-13B-Base-3T/pytorch_model-00002-of-00053.bin deleted file mode 100644 index dcdb1009bafbfb50ce114291f5f07f33ea5be3b2..0000000000000000000000000000000000000000 --- a/model_hubs/Skywork-13B-Base-3T/pytorch_model-00002-of-00053.bin +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a7b651c6dde0c0a430a94dce24d3560bd07db9ed35f1f1cac9edd530e441b5f0 -size 509630194 diff --git a/model_hubs/Skywork-13B-Base-3T/pytorch_model-00003-of-00053.bin b/model_hubs/Skywork-13B-Base-3T/pytorch_model-00003-of-00053.bin deleted file mode 100644 index 5d5fdd9878d5120cef78cf977aff6e879e53ba8f..0000000000000000000000000000000000000000 --- a/model_hubs/Skywork-13B-Base-3T/pytorch_model-00003-of-00053.bin +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8359b7ecc78b02a619751c96f60aec6fee4a2595db3f36cd61a5391838fc7ce1 -size 509630194 diff --git a/model_hubs/Skywork-13B-Base-3T/pytorch_model-00004-of-00053.bin b/model_hubs/Skywork-13B-Base-3T/pytorch_model-00004-of-00053.bin deleted file mode 100644 index 4024f0cf462272635fbf74ec65a80485704ef0e3..0000000000000000000000000000000000000000 --- a/model_hubs/Skywork-13B-Base-3T/pytorch_model-00004-of-00053.bin +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:69c333cb8fcfbe365e3bdcd260e5ff91601da65662a5718d002639937ef3cefb -size 509630194 diff --git a/model_hubs/Skywork-13B-Base-3T/pytorch_model-00005-of-00053.bin b/model_hubs/Skywork-13B-Base-3T/pytorch_model-00005-of-00053.bin deleted file mode 100644 index 63fb4ca1846d2cf5643a9e0e0f50e78e1335a607..0000000000000000000000000000000000000000 --- a/model_hubs/Skywork-13B-Base-3T/pytorch_model-00005-of-00053.bin +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4277ccd1d2175e039075cc6fe2b95e213a590e9eabd35ef26785b998b4f2ad84 -size 509630194 diff --git a/model_hubs/Skywork-13B-Base-3T/pytorch_model-00006-of-00053.bin b/model_hubs/Skywork-13B-Base-3T/pytorch_model-00006-of-00053.bin deleted file mode 100644 index 574726695542cd009aa60e9a5ed445a95b34aeef..0000000000000000000000000000000000000000 --- a/model_hubs/Skywork-13B-Base-3T/pytorch_model-00006-of-00053.bin +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:596649ca586587c17956487cda102ce7ce3c5c950ad89ba1bb8c9ef9224b5a01 -size 509630194 diff --git a/model_hubs/Skywork-13B-Base-3T/pytorch_model-00007-of-00053.bin b/model_hubs/Skywork-13B-Base-3T/pytorch_model-00007-of-00053.bin deleted file mode 100644 index 6012fb8d748d3dc45c04f3e5d2fe614eb2c67de3..0000000000000000000000000000000000000000 --- a/model_hubs/Skywork-13B-Base-3T/pytorch_model-00007-of-00053.bin +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:953fdae0c98a276f579647ab7595cf9548ec3e46cc433364ba23cfa9b2a77e0a -size 509630194 diff --git a/model_hubs/Skywork-13B-Base-3T/pytorch_model-00008-of-00053.bin b/model_hubs/Skywork-13B-Base-3T/pytorch_model-00008-of-00053.bin deleted file mode 100644 index 81e5ee182890730806fc79a669c386d93a76fa4f..0000000000000000000000000000000000000000 --- a/model_hubs/Skywork-13B-Base-3T/pytorch_model-00008-of-00053.bin +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9648394bc03bc87c8913c31893fbdc55dbbbfeaf7041fc4e5b4946469261f026 -size 509630194 diff --git a/model_hubs/Skywork-13B-Base-3T/pytorch_model-00009-of-00053.bin b/model_hubs/Skywork-13B-Base-3T/pytorch_model-00009-of-00053.bin deleted file mode 100644 index 481f3aeda71f79884e3f495815184f6bd3c6808f..0000000000000000000000000000000000000000 --- a/model_hubs/Skywork-13B-Base-3T/pytorch_model-00009-of-00053.bin +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:72c026f7373e85d29e17dd6501c0622da44211273993cc641da8551468a8063d -size 509630194 diff --git a/model_hubs/Skywork-13B-Base-3T/pytorch_model-00010-of-00053.bin b/model_hubs/Skywork-13B-Base-3T/pytorch_model-00010-of-00053.bin deleted file mode 100644 index 6cb445096e2cfc9a7e582b4dce625fabcd1814d8..0000000000000000000000000000000000000000 --- a/model_hubs/Skywork-13B-Base-3T/pytorch_model-00010-of-00053.bin +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9b1f53581597d14404ffd763f646f2a8346f89d3e84fd17f88ea0bc779bcd8cf -size 509630194 diff --git a/model_hubs/Skywork-13B-Base-3T/pytorch_model-00011-of-00053.bin b/model_hubs/Skywork-13B-Base-3T/pytorch_model-00011-of-00053.bin deleted file mode 100644 index 60b7d4629b2acfb518c405970cf59848a87dc9dd..0000000000000000000000000000000000000000 --- a/model_hubs/Skywork-13B-Base-3T/pytorch_model-00011-of-00053.bin +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4be0dc98193a0e3f421c7d2ebe1fa910ea62d70e9bb32b0f4cac7b69326c550c -size 509630194 diff --git a/model_hubs/Skywork-13B-Base-3T/pytorch_model-00012-of-00053.bin b/model_hubs/Skywork-13B-Base-3T/pytorch_model-00012-of-00053.bin deleted file mode 100644 index 41468e1d8288ca66cc1448da451c226a040a69a6..0000000000000000000000000000000000000000 --- a/model_hubs/Skywork-13B-Base-3T/pytorch_model-00012-of-00053.bin +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:94f369d5ba5c26dbf9b2b4ab27803068b220db8a38db5ac644eb24fa79a7b963 -size 509630194 diff --git a/model_hubs/Skywork-13B-Base-3T/pytorch_model-00013-of-00053.bin b/model_hubs/Skywork-13B-Base-3T/pytorch_model-00013-of-00053.bin deleted file mode 100644 index 4ae8dfaf384070f2ef564c0a71538a15d17eadc9..0000000000000000000000000000000000000000 --- a/model_hubs/Skywork-13B-Base-3T/pytorch_model-00013-of-00053.bin +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b766e0e9ceb543f6ca5ebd5e4dac937bf58a7e14a3d13e1ae6d50fec820bfb8b -size 509630194 diff --git a/model_hubs/Skywork-13B-Base-3T/pytorch_model-00014-of-00053.bin b/model_hubs/Skywork-13B-Base-3T/pytorch_model-00014-of-00053.bin deleted file mode 100644 index 92f6d874ba17d482860ab107ef6f1deda2e8e9fa..0000000000000000000000000000000000000000 --- a/model_hubs/Skywork-13B-Base-3T/pytorch_model-00014-of-00053.bin +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a5806356cccd558f1d05643ba00e23db77a8c06a174bfa5831efcd8283582776 -size 509630194 diff --git a/model_hubs/Skywork-13B-Base-3T/pytorch_model-00015-of-00053.bin b/model_hubs/Skywork-13B-Base-3T/pytorch_model-00015-of-00053.bin deleted file mode 100644 index d0c0586f395d56fea43df48e08037f3b8ee208a0..0000000000000000000000000000000000000000 --- a/model_hubs/Skywork-13B-Base-3T/pytorch_model-00015-of-00053.bin +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:d198045292b6d3d0a78f907d67491541e4e5768feb9dfcde5dda18a7f8d8cdfa -size 509630194 diff --git a/model_hubs/Skywork-13B-Base-3T/pytorch_model-00016-of-00053.bin b/model_hubs/Skywork-13B-Base-3T/pytorch_model-00016-of-00053.bin deleted file mode 100644 index 78bc25d0818412b843a18d3bd5c3d62b17e1e706..0000000000000000000000000000000000000000 --- a/model_hubs/Skywork-13B-Base-3T/pytorch_model-00016-of-00053.bin +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:db78b41b807f6c7b1bb6aa7372dbc14c9da9ce0cd4d7c4e89955cfa6e4400f0b -size 509630194 diff --git a/model_hubs/Skywork-13B-Base-3T/pytorch_model-00017-of-00053.bin b/model_hubs/Skywork-13B-Base-3T/pytorch_model-00017-of-00053.bin deleted file mode 100644 index 56d1a731b4c11f3dbe1d719f64adc5a2f58711b1..0000000000000000000000000000000000000000 --- a/model_hubs/Skywork-13B-Base-3T/pytorch_model-00017-of-00053.bin +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:87ef520c42607a36a63f8c7e5e6513e46ccdcbaa077f6a7fa0a17f5663a19cae -size 509630194 diff --git a/model_hubs/Skywork-13B-Base-3T/pytorch_model-00018-of-00053.bin b/model_hubs/Skywork-13B-Base-3T/pytorch_model-00018-of-00053.bin deleted file mode 100644 index 1ca52ae7937f95f69459ae1a2f6bdae86feb15f2..0000000000000000000000000000000000000000 --- a/model_hubs/Skywork-13B-Base-3T/pytorch_model-00018-of-00053.bin +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a43230a0381dc5d4a45f874376d6d1b7c24fb02dd6d9ad62dc934fa4bdbf22c9 -size 509630194 diff --git a/model_hubs/Skywork-13B-Base-3T/pytorch_model-00019-of-00053.bin b/model_hubs/Skywork-13B-Base-3T/pytorch_model-00019-of-00053.bin deleted file mode 100644 index d80b64ef4bc1cd6eabfbe096b357bb653dc0ed97..0000000000000000000000000000000000000000 --- a/model_hubs/Skywork-13B-Base-3T/pytorch_model-00019-of-00053.bin +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4ea20023ae3238034245a47e2d782fa43798074640af65d355d08b5e2c7a3968 -size 509630194 diff --git a/model_hubs/Skywork-13B-Base-3T/pytorch_model-00020-of-00053.bin b/model_hubs/Skywork-13B-Base-3T/pytorch_model-00020-of-00053.bin deleted file mode 100644 index d0fe303c992941ba78a23a881c45da8bc4b45111..0000000000000000000000000000000000000000 --- a/model_hubs/Skywork-13B-Base-3T/pytorch_model-00020-of-00053.bin +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:18465d3d867b0c517d4dcdf61c8088e26a7a16c42d5d17e6efa1d685725d5028 -size 509630194 diff --git a/model_hubs/Skywork-13B-Base-3T/pytorch_model-00021-of-00053.bin b/model_hubs/Skywork-13B-Base-3T/pytorch_model-00021-of-00053.bin deleted file mode 100644 index 922d42ae5fb9fbbf9de285483b646e378260b49f..0000000000000000000000000000000000000000 --- a/model_hubs/Skywork-13B-Base-3T/pytorch_model-00021-of-00053.bin +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:977e108f2584ff9a4f846f3ec4b515c4e28216b1439df82adb7e611a452929a7 -size 509630194 diff --git a/model_hubs/Skywork-13B-Base-3T/pytorch_model-00022-of-00053.bin b/model_hubs/Skywork-13B-Base-3T/pytorch_model-00022-of-00053.bin deleted file mode 100644 index dce9fe1c16c68f81ff9dd601f7582ec91925ad30..0000000000000000000000000000000000000000 --- a/model_hubs/Skywork-13B-Base-3T/pytorch_model-00022-of-00053.bin +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7236496347fda53cf7d1c4daef8c380b6e42d1ec0a6edb44fd9d0e38b6db6419 -size 509630194 diff --git a/model_hubs/Skywork-13B-Base-3T/pytorch_model-00023-of-00053.bin b/model_hubs/Skywork-13B-Base-3T/pytorch_model-00023-of-00053.bin deleted file mode 100644 index 9d428b9c6d69735100d76b81c47b0ce76807de23..0000000000000000000000000000000000000000 --- a/model_hubs/Skywork-13B-Base-3T/pytorch_model-00023-of-00053.bin +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b17bedf66127af7638e660befbc5defd047024d8b63fcd590626af272e3c5cc1 -size 509630194 diff --git a/model_hubs/Skywork-13B-Base-3T/pytorch_model-00024-of-00053.bin b/model_hubs/Skywork-13B-Base-3T/pytorch_model-00024-of-00053.bin deleted file mode 100644 index efd20cdb648b1be9123028d24e07a1476115b4f3..0000000000000000000000000000000000000000 --- a/model_hubs/Skywork-13B-Base-3T/pytorch_model-00024-of-00053.bin +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e76c6c43337c94f45fd1b3f3365d14dfabbfd38cfc9074db75b18d9504052d67 -size 509630194 diff --git a/model_hubs/Skywork-13B-Base-3T/pytorch_model-00025-of-00053.bin b/model_hubs/Skywork-13B-Base-3T/pytorch_model-00025-of-00053.bin deleted file mode 100644 index 672fc5bddd84cd5fbfa955e0b553a00c6f840f57..0000000000000000000000000000000000000000 --- a/model_hubs/Skywork-13B-Base-3T/pytorch_model-00025-of-00053.bin +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:250d260874617a3944545996ba6bd0291b5c748a6e8c603a235fb1f882a93b47 -size 509630194 diff --git a/model_hubs/Skywork-13B-Base-3T/pytorch_model-00026-of-00053.bin b/model_hubs/Skywork-13B-Base-3T/pytorch_model-00026-of-00053.bin deleted file mode 100644 index 7cf3dcf75f8dd2e212cf73cc561e3cb36efb544e..0000000000000000000000000000000000000000 --- a/model_hubs/Skywork-13B-Base-3T/pytorch_model-00026-of-00053.bin +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:52023afeed136ba561793db69a90c23655f637175890e19080a01f62f87cdac9 -size 509630194 diff --git a/model_hubs/Skywork-13B-Base-3T/pytorch_model-00027-of-00053.bin b/model_hubs/Skywork-13B-Base-3T/pytorch_model-00027-of-00053.bin deleted file mode 100644 index 6c2a64b4b153e2785898051928094355946da704..0000000000000000000000000000000000000000 --- a/model_hubs/Skywork-13B-Base-3T/pytorch_model-00027-of-00053.bin +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:54d3e82f5176315c470e4615fd5e1be85383351077fcceb684ab436f3e6796a1 -size 509630194 diff --git a/model_hubs/Skywork-13B-Base-3T/pytorch_model-00028-of-00053.bin b/model_hubs/Skywork-13B-Base-3T/pytorch_model-00028-of-00053.bin deleted file mode 100644 index 3d8ac9971e13ccde8cfa6e35889c7e1cd49eebc6..0000000000000000000000000000000000000000 --- a/model_hubs/Skywork-13B-Base-3T/pytorch_model-00028-of-00053.bin +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:7aff27ef911125a991c6b58d8e809b319e847ff558cd12d49b025e06d3c5728e -size 509630194 diff --git a/model_hubs/Skywork-13B-Base-3T/pytorch_model-00029-of-00053.bin b/model_hubs/Skywork-13B-Base-3T/pytorch_model-00029-of-00053.bin deleted file mode 100644 index 021f0c6884915f5bbad2ce59add724002d7c795f..0000000000000000000000000000000000000000 --- a/model_hubs/Skywork-13B-Base-3T/pytorch_model-00029-of-00053.bin +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c1832c51bef229f9014fa518c5cff4dcc39723ab853c880335796f5740914c80 -size 509630194 diff --git a/model_hubs/Skywork-13B-Base-3T/pytorch_model-00030-of-00053.bin b/model_hubs/Skywork-13B-Base-3T/pytorch_model-00030-of-00053.bin deleted file mode 100644 index ef1154485bf75cac5ec4aba6f77743698a0b725d..0000000000000000000000000000000000000000 --- a/model_hubs/Skywork-13B-Base-3T/pytorch_model-00030-of-00053.bin +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4a72d1a732e9a99abf661f5e109c589635d1a86886bac7f2aa80a7b6c409f8be -size 509630194 diff --git a/model_hubs/Skywork-13B-Base-3T/pytorch_model-00031-of-00053.bin b/model_hubs/Skywork-13B-Base-3T/pytorch_model-00031-of-00053.bin deleted file mode 100644 index 05ea64b551989a86be125b2c6517d56b364361c4..0000000000000000000000000000000000000000 --- a/model_hubs/Skywork-13B-Base-3T/pytorch_model-00031-of-00053.bin +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:4114c138eb5a1bf68bd29a125c31e24201c3a5cf95ec3757c2b2f366b45befe6 -size 509630194 diff --git a/model_hubs/Skywork-13B-Base-3T/pytorch_model-00032-of-00053.bin b/model_hubs/Skywork-13B-Base-3T/pytorch_model-00032-of-00053.bin deleted file mode 100644 index 4d8187ebb92ce48307016ab9bc49b4d5b8fa3a8d..0000000000000000000000000000000000000000 --- a/model_hubs/Skywork-13B-Base-3T/pytorch_model-00032-of-00053.bin +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:31aaa207f4a4c1042868c0320cec86c8f7aed5ba0940c2552f9c6be88526398a -size 509630194 diff --git a/model_hubs/Skywork-13B-Base-3T/pytorch_model-00033-of-00053.bin b/model_hubs/Skywork-13B-Base-3T/pytorch_model-00033-of-00053.bin deleted file mode 100644 index 14b2e3af217d371f819d0edaa3e3a55e26609dd5..0000000000000000000000000000000000000000 --- a/model_hubs/Skywork-13B-Base-3T/pytorch_model-00033-of-00053.bin +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:abf15bdd7289fabf72251cd45026e78b6bdd5c8a8c849d3ab4658521a9b5383e -size 509630194 diff --git a/model_hubs/Skywork-13B-Base-3T/pytorch_model-00034-of-00053.bin b/model_hubs/Skywork-13B-Base-3T/pytorch_model-00034-of-00053.bin deleted file mode 100644 index 1f2f4b8ae797e2d88866545c33b82c3b1e198cc6..0000000000000000000000000000000000000000 --- a/model_hubs/Skywork-13B-Base-3T/pytorch_model-00034-of-00053.bin +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a7ce1cb13ef764d3da8c01e65a7cb12e9b78fc7410555441851ad05138cbfdbc -size 509630194 diff --git a/model_hubs/Skywork-13B-Base-3T/pytorch_model-00035-of-00053.bin b/model_hubs/Skywork-13B-Base-3T/pytorch_model-00035-of-00053.bin deleted file mode 100644 index 0375cdd22a38fe10a37583b404a5e62c98fd47e5..0000000000000000000000000000000000000000 --- a/model_hubs/Skywork-13B-Base-3T/pytorch_model-00035-of-00053.bin +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:b0c95670bea6f294572d6e0c7d6f410a378ed546c8beb239ee86d4b858574096 -size 509630194 diff --git a/model_hubs/Skywork-13B-Base-3T/pytorch_model-00036-of-00053.bin b/model_hubs/Skywork-13B-Base-3T/pytorch_model-00036-of-00053.bin deleted file mode 100644 index 37b06dd03e963ce25d9905478a30e9e40cdb9ee2..0000000000000000000000000000000000000000 --- a/model_hubs/Skywork-13B-Base-3T/pytorch_model-00036-of-00053.bin +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:de7e7cc3ece84abbc58aa053644369e5efce366da96dfd94a70477eaacc4edcc -size 509630194 diff --git a/model_hubs/Skywork-13B-Base-3T/pytorch_model-00037-of-00053.bin b/model_hubs/Skywork-13B-Base-3T/pytorch_model-00037-of-00053.bin deleted file mode 100644 index 9ea37af207c1e8b71536cae9251fc36fbff4bcfe..0000000000000000000000000000000000000000 --- a/model_hubs/Skywork-13B-Base-3T/pytorch_model-00037-of-00053.bin +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:46c8254b6f12d8bb032f4cfa9c4596f06692eb307cfd2a617d7c4639282fdcf4 -size 509630194 diff --git a/model_hubs/Skywork-13B-Base-3T/pytorch_model-00038-of-00053.bin b/model_hubs/Skywork-13B-Base-3T/pytorch_model-00038-of-00053.bin deleted file mode 100644 index 6e786f61dc0a4454552c2130124ca3cd2d48b8d8..0000000000000000000000000000000000000000 --- a/model_hubs/Skywork-13B-Base-3T/pytorch_model-00038-of-00053.bin +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:6784ebd555e163c58262116bd192a2bc2679d30311c8387fb8a652f9ae3d082b -size 509630194 diff --git a/model_hubs/Skywork-13B-Base-3T/pytorch_model-00039-of-00053.bin b/model_hubs/Skywork-13B-Base-3T/pytorch_model-00039-of-00053.bin deleted file mode 100644 index 8abae969626746f1d9648ed3a78bda0993616fe6..0000000000000000000000000000000000000000 --- a/model_hubs/Skywork-13B-Base-3T/pytorch_model-00039-of-00053.bin +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:30db78de4bdbedd9066f08a8f0fc4fa6558ec22503df34d289bcad5dee26dbb8 -size 509630194 diff --git a/model_hubs/Skywork-13B-Base-3T/pytorch_model-00040-of-00053.bin b/model_hubs/Skywork-13B-Base-3T/pytorch_model-00040-of-00053.bin deleted file mode 100644 index c94c8fe92d17c6dc5c5d241f95c554e768bed582..0000000000000000000000000000000000000000 --- a/model_hubs/Skywork-13B-Base-3T/pytorch_model-00040-of-00053.bin +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:571fe808760c495bf1b97396ec9ef4ce3bd5c1003d692dfcb7d3ad7197023a67 -size 509630194 diff --git a/model_hubs/Skywork-13B-Base-3T/pytorch_model-00041-of-00053.bin b/model_hubs/Skywork-13B-Base-3T/pytorch_model-00041-of-00053.bin deleted file mode 100644 index a62db24345c4816505c53beb85ae4017f3ff6f56..0000000000000000000000000000000000000000 --- a/model_hubs/Skywork-13B-Base-3T/pytorch_model-00041-of-00053.bin +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:9ca91a4280c92688d97088bf2d3f1a0da6dcbed864f91f73ae7cec4bfc8496a0 -size 509630194 diff --git a/model_hubs/Skywork-13B-Base-3T/pytorch_model-00042-of-00053.bin b/model_hubs/Skywork-13B-Base-3T/pytorch_model-00042-of-00053.bin deleted file mode 100644 index 284845b41de77d53b1263c9eea855e595190cfa0..0000000000000000000000000000000000000000 --- a/model_hubs/Skywork-13B-Base-3T/pytorch_model-00042-of-00053.bin +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:572a6a020f42889d4e41596017022e880a4565cac9fa7b6072e6db21955dee78 -size 509630194 diff --git a/model_hubs/Skywork-13B-Base-3T/pytorch_model-00043-of-00053.bin b/model_hubs/Skywork-13B-Base-3T/pytorch_model-00043-of-00053.bin deleted file mode 100644 index f673217e823bb804fe724f26ec97411b100ecac6..0000000000000000000000000000000000000000 --- a/model_hubs/Skywork-13B-Base-3T/pytorch_model-00043-of-00053.bin +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:59ebb7958ba6de1cd89e31ef83e6786eacc07d8de467234543a6356466e820e0 -size 509630194 diff --git a/model_hubs/Skywork-13B-Base-3T/pytorch_model-00044-of-00053.bin b/model_hubs/Skywork-13B-Base-3T/pytorch_model-00044-of-00053.bin deleted file mode 100644 index be8fcca5a22cc82a0dbc2bfd4ec35c6faf4942a1..0000000000000000000000000000000000000000 --- a/model_hubs/Skywork-13B-Base-3T/pytorch_model-00044-of-00053.bin +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e3b364a668f019e0896567dfcde7ed9d131bef3b602b4bb9e932430820ca4101 -size 509630194 diff --git a/model_hubs/Skywork-13B-Base-3T/pytorch_model-00045-of-00053.bin b/model_hubs/Skywork-13B-Base-3T/pytorch_model-00045-of-00053.bin deleted file mode 100644 index 237fc1d08a95e3e454c33aa901cb79f97f45649d..0000000000000000000000000000000000000000 --- a/model_hubs/Skywork-13B-Base-3T/pytorch_model-00045-of-00053.bin +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:c1c4819c9218302cfe4ad737bc079eb75aff0c58f854e82d391de66b8ae8724c -size 509630194 diff --git a/model_hubs/Skywork-13B-Base-3T/pytorch_model-00046-of-00053.bin b/model_hubs/Skywork-13B-Base-3T/pytorch_model-00046-of-00053.bin deleted file mode 100644 index 015a269508b74e3615d58284fee375abf18abfff..0000000000000000000000000000000000000000 --- a/model_hubs/Skywork-13B-Base-3T/pytorch_model-00046-of-00053.bin +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:80692b714d33ec725a47009bec70a296365667698ea8d8b49c48d49cf753f969 -size 509630194 diff --git a/model_hubs/Skywork-13B-Base-3T/pytorch_model-00047-of-00053.bin b/model_hubs/Skywork-13B-Base-3T/pytorch_model-00047-of-00053.bin deleted file mode 100644 index 1f9c9d4d9f5aa5316ff01205bf479642bf8b8455..0000000000000000000000000000000000000000 --- a/model_hubs/Skywork-13B-Base-3T/pytorch_model-00047-of-00053.bin +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:cf8cf7e93f03160ef12731981c49e2295a85df6daa06aeb5f9ba02c486dabb6a -size 509630194 diff --git a/model_hubs/Skywork-13B-Base-3T/pytorch_model-00048-of-00053.bin b/model_hubs/Skywork-13B-Base-3T/pytorch_model-00048-of-00053.bin deleted file mode 100644 index e2c01149adf9d712ad6ed00049f00260aa32e0f1..0000000000000000000000000000000000000000 --- a/model_hubs/Skywork-13B-Base-3T/pytorch_model-00048-of-00053.bin +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:08ea3cc15bd70ec948e83cdce1f857dd7580c2924acddec3215469c59b9c256b -size 509630194 diff --git a/model_hubs/Skywork-13B-Base-3T/pytorch_model-00049-of-00053.bin b/model_hubs/Skywork-13B-Base-3T/pytorch_model-00049-of-00053.bin deleted file mode 100644 index d6fdd0c26be778a728c2fba5e54e31198c73c684..0000000000000000000000000000000000000000 --- a/model_hubs/Skywork-13B-Base-3T/pytorch_model-00049-of-00053.bin +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:25dcf34c85d0475596421183723a163a1a09b9964f9375ed671935d0060994dd -size 509630194 diff --git a/model_hubs/Skywork-13B-Base-3T/pytorch_model-00050-of-00053.bin b/model_hubs/Skywork-13B-Base-3T/pytorch_model-00050-of-00053.bin deleted file mode 100644 index e9681156ba7959f9f007aa6d9a60c5076fa2af08..0000000000000000000000000000000000000000 --- a/model_hubs/Skywork-13B-Base-3T/pytorch_model-00050-of-00053.bin +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:bfd81aa8a0213eb25a9272944191d3c504de4eb60cba099b8c9f29093b55034e -size 509630194 diff --git a/model_hubs/Skywork-13B-Base-3T/pytorch_model-00051-of-00053.bin b/model_hubs/Skywork-13B-Base-3T/pytorch_model-00051-of-00053.bin deleted file mode 100644 index a8bd944ef9e20bc610746133db68a98e1673c09a..0000000000000000000000000000000000000000 --- a/model_hubs/Skywork-13B-Base-3T/pytorch_model-00051-of-00053.bin +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:8e815bbf127cb17a72b0be5bf29d03fcd42b9d2e7824f96ff0c897433fe22f31 -size 509630194 diff --git a/model_hubs/Skywork-13B-Base-3T/pytorch_model-00052-of-00053.bin b/model_hubs/Skywork-13B-Base-3T/pytorch_model-00052-of-00053.bin deleted file mode 100644 index b4b3a925263fbdd2695e5058d70c059ec2f6c68d..0000000000000000000000000000000000000000 --- a/model_hubs/Skywork-13B-Base-3T/pytorch_model-00052-of-00053.bin +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:a52f7e43ffa1d8003d4671d77c2ad6e9f7495889b2af607b42c0055a0aeef8f5 -size 509630194 diff --git a/model_hubs/Skywork-13B-Base-3T/pytorch_model-00053-of-00053.bin b/model_hubs/Skywork-13B-Base-3T/pytorch_model-00053-of-00053.bin deleted file mode 100644 index ff029f005d1bad7adeef623f62b3d864a8fa4acf..0000000000000000000000000000000000000000 --- a/model_hubs/Skywork-13B-Base-3T/pytorch_model-00053-of-00053.bin +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:3fad3641e4921e518a700f4d6c0b86299ee2343b263190e7bce5968e98afde8d -size 1207656908 diff --git a/model_hubs/Skywork-13B-Base-3T/pytorch_model.bin.index.json b/model_hubs/Skywork-13B-Base-3T/pytorch_model.bin.index.json deleted file mode 100644 index 163c37a78b34efe7cc858ea3fdca93e4c7c25699..0000000000000000000000000000000000000000 --- a/model_hubs/Skywork-13B-Base-3T/pytorch_model.bin.index.json +++ /dev/null @@ -1 +0,0 @@ -{"metadata": {"total_size": 27708239872}, "weight_map": {"model.layers.0.input_layernorm.weight": "pytorch_model-00001-of-00053.bin", "model.layers.0.post_attention_layernorm.weight": "pytorch_model-00001-of-00053.bin", "model.layers.0.self_attn.q_proj.weight": "pytorch_model-00001-of-00053.bin", "model.layers.0.self_attn.k_proj.weight": "pytorch_model-00001-of-00053.bin", "model.layers.0.self_attn.v_proj.weight": "pytorch_model-00001-of-00053.bin", "model.layers.0.self_attn.o_proj.weight": "pytorch_model-00001-of-00053.bin", "model.layers.0.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00053.bin", "model.layers.0.mlp.gate_proj.weight": "pytorch_model-00001-of-00053.bin", "model.layers.0.mlp.up_proj.weight": "pytorch_model-00001-of-00053.bin", "model.layers.0.mlp.down_proj.weight": "pytorch_model-00001-of-00053.bin", "model.layers.1.input_layernorm.weight": "pytorch_model-00002-of-00053.bin", "model.layers.1.post_attention_layernorm.weight": "pytorch_model-00002-of-00053.bin", "model.layers.1.self_attn.q_proj.weight": "pytorch_model-00002-of-00053.bin", "model.layers.1.self_attn.k_proj.weight": "pytorch_model-00002-of-00053.bin", "model.layers.1.self_attn.v_proj.weight": "pytorch_model-00002-of-00053.bin", "model.layers.1.self_attn.o_proj.weight": "pytorch_model-00002-of-00053.bin", "model.layers.1.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00053.bin", "model.layers.1.mlp.gate_proj.weight": "pytorch_model-00002-of-00053.bin", "model.layers.1.mlp.up_proj.weight": "pytorch_model-00002-of-00053.bin", "model.layers.1.mlp.down_proj.weight": "pytorch_model-00002-of-00053.bin", "model.layers.2.input_layernorm.weight": "pytorch_model-00003-of-00053.bin", "model.layers.2.post_attention_layernorm.weight": "pytorch_model-00003-of-00053.bin", "model.layers.2.self_attn.q_proj.weight": "pytorch_model-00003-of-00053.bin", "model.layers.2.self_attn.k_proj.weight": "pytorch_model-00003-of-00053.bin", "model.layers.2.self_attn.v_proj.weight": "pytorch_model-00003-of-00053.bin", "model.layers.2.self_attn.o_proj.weight": "pytorch_model-00003-of-00053.bin", "model.layers.2.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00053.bin", "model.layers.2.mlp.gate_proj.weight": "pytorch_model-00003-of-00053.bin", "model.layers.2.mlp.up_proj.weight": "pytorch_model-00003-of-00053.bin", "model.layers.2.mlp.down_proj.weight": "pytorch_model-00003-of-00053.bin", "model.layers.3.input_layernorm.weight": "pytorch_model-00004-of-00053.bin", "model.layers.3.post_attention_layernorm.weight": "pytorch_model-00004-of-00053.bin", "model.layers.3.self_attn.q_proj.weight": "pytorch_model-00004-of-00053.bin", "model.layers.3.self_attn.k_proj.weight": "pytorch_model-00004-of-00053.bin", "model.layers.3.self_attn.v_proj.weight": "pytorch_model-00004-of-00053.bin", "model.layers.3.self_attn.o_proj.weight": "pytorch_model-00004-of-00053.bin", "model.layers.3.self_attn.rotary_emb.inv_freq": "pytorch_model-00004-of-00053.bin", "model.layers.3.mlp.gate_proj.weight": "pytorch_model-00004-of-00053.bin", "model.layers.3.mlp.up_proj.weight": "pytorch_model-00004-of-00053.bin", "model.layers.3.mlp.down_proj.weight": "pytorch_model-00004-of-00053.bin", "model.layers.4.input_layernorm.weight": "pytorch_model-00005-of-00053.bin", "model.layers.4.post_attention_layernorm.weight": "pytorch_model-00005-of-00053.bin", "model.layers.4.self_attn.q_proj.weight": "pytorch_model-00005-of-00053.bin", "model.layers.4.self_attn.k_proj.weight": "pytorch_model-00005-of-00053.bin", "model.layers.4.self_attn.v_proj.weight": "pytorch_model-00005-of-00053.bin", "model.layers.4.self_attn.o_proj.weight": "pytorch_model-00005-of-00053.bin", "model.layers.4.self_attn.rotary_emb.inv_freq": "pytorch_model-00005-of-00053.bin", "model.layers.4.mlp.gate_proj.weight": "pytorch_model-00005-of-00053.bin", "model.layers.4.mlp.up_proj.weight": "pytorch_model-00005-of-00053.bin", "model.layers.4.mlp.down_proj.weight": "pytorch_model-00005-of-00053.bin", "model.layers.5.input_layernorm.weight": "pytorch_model-00006-of-00053.bin", "model.layers.5.post_attention_layernorm.weight": "pytorch_model-00006-of-00053.bin", "model.layers.5.self_attn.q_proj.weight": "pytorch_model-00006-of-00053.bin", "model.layers.5.self_attn.k_proj.weight": "pytorch_model-00006-of-00053.bin", "model.layers.5.self_attn.v_proj.weight": "pytorch_model-00006-of-00053.bin", "model.layers.5.self_attn.o_proj.weight": "pytorch_model-00006-of-00053.bin", "model.layers.5.self_attn.rotary_emb.inv_freq": "pytorch_model-00006-of-00053.bin", "model.layers.5.mlp.gate_proj.weight": "pytorch_model-00006-of-00053.bin", "model.layers.5.mlp.up_proj.weight": "pytorch_model-00006-of-00053.bin", "model.layers.5.mlp.down_proj.weight": "pytorch_model-00006-of-00053.bin", "model.layers.6.input_layernorm.weight": "pytorch_model-00007-of-00053.bin", "model.layers.6.post_attention_layernorm.weight": "pytorch_model-00007-of-00053.bin", "model.layers.6.self_attn.q_proj.weight": "pytorch_model-00007-of-00053.bin", "model.layers.6.self_attn.k_proj.weight": "pytorch_model-00007-of-00053.bin", "model.layers.6.self_attn.v_proj.weight": "pytorch_model-00007-of-00053.bin", "model.layers.6.self_attn.o_proj.weight": "pytorch_model-00007-of-00053.bin", "model.layers.6.self_attn.rotary_emb.inv_freq": "pytorch_model-00007-of-00053.bin", "model.layers.6.mlp.gate_proj.weight": "pytorch_model-00007-of-00053.bin", "model.layers.6.mlp.up_proj.weight": "pytorch_model-00007-of-00053.bin", "model.layers.6.mlp.down_proj.weight": "pytorch_model-00007-of-00053.bin", "model.layers.7.input_layernorm.weight": "pytorch_model-00008-of-00053.bin", "model.layers.7.post_attention_layernorm.weight": "pytorch_model-00008-of-00053.bin", "model.layers.7.self_attn.q_proj.weight": "pytorch_model-00008-of-00053.bin", "model.layers.7.self_attn.k_proj.weight": "pytorch_model-00008-of-00053.bin", "model.layers.7.self_attn.v_proj.weight": "pytorch_model-00008-of-00053.bin", "model.layers.7.self_attn.o_proj.weight": "pytorch_model-00008-of-00053.bin", "model.layers.7.self_attn.rotary_emb.inv_freq": "pytorch_model-00008-of-00053.bin", "model.layers.7.mlp.gate_proj.weight": "pytorch_model-00008-of-00053.bin", "model.layers.7.mlp.up_proj.weight": "pytorch_model-00008-of-00053.bin", "model.layers.7.mlp.down_proj.weight": "pytorch_model-00008-of-00053.bin", "model.layers.8.input_layernorm.weight": "pytorch_model-00009-of-00053.bin", "model.layers.8.post_attention_layernorm.weight": "pytorch_model-00009-of-00053.bin", "model.layers.8.self_attn.q_proj.weight": "pytorch_model-00009-of-00053.bin", "model.layers.8.self_attn.k_proj.weight": "pytorch_model-00009-of-00053.bin", "model.layers.8.self_attn.v_proj.weight": "pytorch_model-00009-of-00053.bin", "model.layers.8.self_attn.o_proj.weight": "pytorch_model-00009-of-00053.bin", "model.layers.8.self_attn.rotary_emb.inv_freq": "pytorch_model-00009-of-00053.bin", "model.layers.8.mlp.gate_proj.weight": "pytorch_model-00009-of-00053.bin", "model.layers.8.mlp.up_proj.weight": "pytorch_model-00009-of-00053.bin", "model.layers.8.mlp.down_proj.weight": "pytorch_model-00009-of-00053.bin", "model.layers.9.input_layernorm.weight": "pytorch_model-00010-of-00053.bin", "model.layers.9.post_attention_layernorm.weight": "pytorch_model-00010-of-00053.bin", "model.layers.9.self_attn.q_proj.weight": "pytorch_model-00010-of-00053.bin", "model.layers.9.self_attn.k_proj.weight": "pytorch_model-00010-of-00053.bin", "model.layers.9.self_attn.v_proj.weight": "pytorch_model-00010-of-00053.bin", "model.layers.9.self_attn.o_proj.weight": "pytorch_model-00010-of-00053.bin", "model.layers.9.self_attn.rotary_emb.inv_freq": "pytorch_model-00010-of-00053.bin", "model.layers.9.mlp.gate_proj.weight": "pytorch_model-00010-of-00053.bin", "model.layers.9.mlp.up_proj.weight": "pytorch_model-00010-of-00053.bin", "model.layers.9.mlp.down_proj.weight": "pytorch_model-00010-of-00053.bin", "model.layers.10.input_layernorm.weight": "pytorch_model-00011-of-00053.bin", "model.layers.10.post_attention_layernorm.weight": "pytorch_model-00011-of-00053.bin", "model.layers.10.self_attn.q_proj.weight": "pytorch_model-00011-of-00053.bin", "model.layers.10.self_attn.k_proj.weight": "pytorch_model-00011-of-00053.bin", "model.layers.10.self_attn.v_proj.weight": "pytorch_model-00011-of-00053.bin", "model.layers.10.self_attn.o_proj.weight": "pytorch_model-00011-of-00053.bin", "model.layers.10.self_attn.rotary_emb.inv_freq": "pytorch_model-00011-of-00053.bin", "model.layers.10.mlp.gate_proj.weight": "pytorch_model-00011-of-00053.bin", "model.layers.10.mlp.up_proj.weight": "pytorch_model-00011-of-00053.bin", "model.layers.10.mlp.down_proj.weight": "pytorch_model-00011-of-00053.bin", "model.layers.11.input_layernorm.weight": "pytorch_model-00012-of-00053.bin", "model.layers.11.post_attention_layernorm.weight": "pytorch_model-00012-of-00053.bin", "model.layers.11.self_attn.q_proj.weight": "pytorch_model-00012-of-00053.bin", "model.layers.11.self_attn.k_proj.weight": "pytorch_model-00012-of-00053.bin", "model.layers.11.self_attn.v_proj.weight": "pytorch_model-00012-of-00053.bin", "model.layers.11.self_attn.o_proj.weight": "pytorch_model-00012-of-00053.bin", "model.layers.11.self_attn.rotary_emb.inv_freq": "pytorch_model-00012-of-00053.bin", "model.layers.11.mlp.gate_proj.weight": "pytorch_model-00012-of-00053.bin", "model.layers.11.mlp.up_proj.weight": "pytorch_model-00012-of-00053.bin", "model.layers.11.mlp.down_proj.weight": "pytorch_model-00012-of-00053.bin", "model.layers.12.input_layernorm.weight": "pytorch_model-00013-of-00053.bin", "model.layers.12.post_attention_layernorm.weight": "pytorch_model-00013-of-00053.bin", "model.layers.12.self_attn.q_proj.weight": "pytorch_model-00013-of-00053.bin", "model.layers.12.self_attn.k_proj.weight": "pytorch_model-00013-of-00053.bin", "model.layers.12.self_attn.v_proj.weight": "pytorch_model-00013-of-00053.bin", "model.layers.12.self_attn.o_proj.weight": "pytorch_model-00013-of-00053.bin", "model.layers.12.self_attn.rotary_emb.inv_freq": "pytorch_model-00013-of-00053.bin", "model.layers.12.mlp.gate_proj.weight": "pytorch_model-00013-of-00053.bin", "model.layers.12.mlp.up_proj.weight": "pytorch_model-00013-of-00053.bin", "model.layers.12.mlp.down_proj.weight": "pytorch_model-00013-of-00053.bin", "model.layers.13.input_layernorm.weight": "pytorch_model-00014-of-00053.bin", "model.layers.13.post_attention_layernorm.weight": "pytorch_model-00014-of-00053.bin", "model.layers.13.self_attn.q_proj.weight": "pytorch_model-00014-of-00053.bin", "model.layers.13.self_attn.k_proj.weight": "pytorch_model-00014-of-00053.bin", "model.layers.13.self_attn.v_proj.weight": "pytorch_model-00014-of-00053.bin", "model.layers.13.self_attn.o_proj.weight": "pytorch_model-00014-of-00053.bin", "model.layers.13.self_attn.rotary_emb.inv_freq": "pytorch_model-00014-of-00053.bin", "model.layers.13.mlp.gate_proj.weight": "pytorch_model-00014-of-00053.bin", "model.layers.13.mlp.up_proj.weight": "pytorch_model-00014-of-00053.bin", "model.layers.13.mlp.down_proj.weight": "pytorch_model-00014-of-00053.bin", "model.layers.14.input_layernorm.weight": "pytorch_model-00015-of-00053.bin", "model.layers.14.post_attention_layernorm.weight": "pytorch_model-00015-of-00053.bin", "model.layers.14.self_attn.q_proj.weight": "pytorch_model-00015-of-00053.bin", "model.layers.14.self_attn.k_proj.weight": "pytorch_model-00015-of-00053.bin", "model.layers.14.self_attn.v_proj.weight": "pytorch_model-00015-of-00053.bin", "model.layers.14.self_attn.o_proj.weight": "pytorch_model-00015-of-00053.bin", "model.layers.14.self_attn.rotary_emb.inv_freq": "pytorch_model-00015-of-00053.bin", "model.layers.14.mlp.gate_proj.weight": "pytorch_model-00015-of-00053.bin", "model.layers.14.mlp.up_proj.weight": "pytorch_model-00015-of-00053.bin", "model.layers.14.mlp.down_proj.weight": "pytorch_model-00015-of-00053.bin", "model.layers.15.input_layernorm.weight": "pytorch_model-00016-of-00053.bin", "model.layers.15.post_attention_layernorm.weight": "pytorch_model-00016-of-00053.bin", "model.layers.15.self_attn.q_proj.weight": "pytorch_model-00016-of-00053.bin", "model.layers.15.self_attn.k_proj.weight": "pytorch_model-00016-of-00053.bin", "model.layers.15.self_attn.v_proj.weight": "pytorch_model-00016-of-00053.bin", "model.layers.15.self_attn.o_proj.weight": "pytorch_model-00016-of-00053.bin", "model.layers.15.self_attn.rotary_emb.inv_freq": "pytorch_model-00016-of-00053.bin", "model.layers.15.mlp.gate_proj.weight": "pytorch_model-00016-of-00053.bin", "model.layers.15.mlp.up_proj.weight": "pytorch_model-00016-of-00053.bin", "model.layers.15.mlp.down_proj.weight": "pytorch_model-00016-of-00053.bin", "model.layers.16.input_layernorm.weight": "pytorch_model-00017-of-00053.bin", "model.layers.16.post_attention_layernorm.weight": "pytorch_model-00017-of-00053.bin", "model.layers.16.self_attn.q_proj.weight": "pytorch_model-00017-of-00053.bin", "model.layers.16.self_attn.k_proj.weight": "pytorch_model-00017-of-00053.bin", "model.layers.16.self_attn.v_proj.weight": "pytorch_model-00017-of-00053.bin", "model.layers.16.self_attn.o_proj.weight": "pytorch_model-00017-of-00053.bin", "model.layers.16.self_attn.rotary_emb.inv_freq": "pytorch_model-00017-of-00053.bin", "model.layers.16.mlp.gate_proj.weight": "pytorch_model-00017-of-00053.bin", "model.layers.16.mlp.up_proj.weight": "pytorch_model-00017-of-00053.bin", "model.layers.16.mlp.down_proj.weight": "pytorch_model-00017-of-00053.bin", "model.layers.17.input_layernorm.weight": "pytorch_model-00018-of-00053.bin", "model.layers.17.post_attention_layernorm.weight": "pytorch_model-00018-of-00053.bin", "model.layers.17.self_attn.q_proj.weight": "pytorch_model-00018-of-00053.bin", "model.layers.17.self_attn.k_proj.weight": "pytorch_model-00018-of-00053.bin", "model.layers.17.self_attn.v_proj.weight": "pytorch_model-00018-of-00053.bin", "model.layers.17.self_attn.o_proj.weight": "pytorch_model-00018-of-00053.bin", "model.layers.17.self_attn.rotary_emb.inv_freq": "pytorch_model-00018-of-00053.bin", "model.layers.17.mlp.gate_proj.weight": "pytorch_model-00018-of-00053.bin", "model.layers.17.mlp.up_proj.weight": "pytorch_model-00018-of-00053.bin", "model.layers.17.mlp.down_proj.weight": "pytorch_model-00018-of-00053.bin", "model.layers.18.input_layernorm.weight": "pytorch_model-00019-of-00053.bin", "model.layers.18.post_attention_layernorm.weight": "pytorch_model-00019-of-00053.bin", "model.layers.18.self_attn.q_proj.weight": "pytorch_model-00019-of-00053.bin", "model.layers.18.self_attn.k_proj.weight": "pytorch_model-00019-of-00053.bin", "model.layers.18.self_attn.v_proj.weight": "pytorch_model-00019-of-00053.bin", "model.layers.18.self_attn.o_proj.weight": "pytorch_model-00019-of-00053.bin", "model.layers.18.self_attn.rotary_emb.inv_freq": "pytorch_model-00019-of-00053.bin", "model.layers.18.mlp.gate_proj.weight": "pytorch_model-00019-of-00053.bin", "model.layers.18.mlp.up_proj.weight": "pytorch_model-00019-of-00053.bin", "model.layers.18.mlp.down_proj.weight": "pytorch_model-00019-of-00053.bin", "model.layers.19.input_layernorm.weight": "pytorch_model-00020-of-00053.bin", "model.layers.19.post_attention_layernorm.weight": "pytorch_model-00020-of-00053.bin", "model.layers.19.self_attn.q_proj.weight": "pytorch_model-00020-of-00053.bin", "model.layers.19.self_attn.k_proj.weight": "pytorch_model-00020-of-00053.bin", "model.layers.19.self_attn.v_proj.weight": "pytorch_model-00020-of-00053.bin", "model.layers.19.self_attn.o_proj.weight": "pytorch_model-00020-of-00053.bin", "model.layers.19.self_attn.rotary_emb.inv_freq": "pytorch_model-00020-of-00053.bin", "model.layers.19.mlp.gate_proj.weight": "pytorch_model-00020-of-00053.bin", "model.layers.19.mlp.up_proj.weight": "pytorch_model-00020-of-00053.bin", "model.layers.19.mlp.down_proj.weight": "pytorch_model-00020-of-00053.bin", "model.layers.20.input_layernorm.weight": "pytorch_model-00021-of-00053.bin", "model.layers.20.post_attention_layernorm.weight": "pytorch_model-00021-of-00053.bin", "model.layers.20.self_attn.q_proj.weight": "pytorch_model-00021-of-00053.bin", "model.layers.20.self_attn.k_proj.weight": "pytorch_model-00021-of-00053.bin", "model.layers.20.self_attn.v_proj.weight": "pytorch_model-00021-of-00053.bin", "model.layers.20.self_attn.o_proj.weight": "pytorch_model-00021-of-00053.bin", "model.layers.20.self_attn.rotary_emb.inv_freq": "pytorch_model-00021-of-00053.bin", "model.layers.20.mlp.gate_proj.weight": "pytorch_model-00021-of-00053.bin", "model.layers.20.mlp.up_proj.weight": "pytorch_model-00021-of-00053.bin", "model.layers.20.mlp.down_proj.weight": "pytorch_model-00021-of-00053.bin", "model.layers.21.input_layernorm.weight": "pytorch_model-00022-of-00053.bin", "model.layers.21.post_attention_layernorm.weight": "pytorch_model-00022-of-00053.bin", "model.layers.21.self_attn.q_proj.weight": "pytorch_model-00022-of-00053.bin", "model.layers.21.self_attn.k_proj.weight": "pytorch_model-00022-of-00053.bin", "model.layers.21.self_attn.v_proj.weight": "pytorch_model-00022-of-00053.bin", "model.layers.21.self_attn.o_proj.weight": "pytorch_model-00022-of-00053.bin", "model.layers.21.self_attn.rotary_emb.inv_freq": "pytorch_model-00022-of-00053.bin", "model.layers.21.mlp.gate_proj.weight": "pytorch_model-00022-of-00053.bin", "model.layers.21.mlp.up_proj.weight": "pytorch_model-00022-of-00053.bin", "model.layers.21.mlp.down_proj.weight": "pytorch_model-00022-of-00053.bin", "model.layers.22.input_layernorm.weight": "pytorch_model-00023-of-00053.bin", "model.layers.22.post_attention_layernorm.weight": "pytorch_model-00023-of-00053.bin", "model.layers.22.self_attn.q_proj.weight": "pytorch_model-00023-of-00053.bin", "model.layers.22.self_attn.k_proj.weight": "pytorch_model-00023-of-00053.bin", "model.layers.22.self_attn.v_proj.weight": "pytorch_model-00023-of-00053.bin", "model.layers.22.self_attn.o_proj.weight": "pytorch_model-00023-of-00053.bin", "model.layers.22.self_attn.rotary_emb.inv_freq": "pytorch_model-00023-of-00053.bin", "model.layers.22.mlp.gate_proj.weight": "pytorch_model-00023-of-00053.bin", "model.layers.22.mlp.up_proj.weight": "pytorch_model-00023-of-00053.bin", "model.layers.22.mlp.down_proj.weight": "pytorch_model-00023-of-00053.bin", "model.layers.23.input_layernorm.weight": "pytorch_model-00024-of-00053.bin", "model.layers.23.post_attention_layernorm.weight": "pytorch_model-00024-of-00053.bin", "model.layers.23.self_attn.q_proj.weight": "pytorch_model-00024-of-00053.bin", "model.layers.23.self_attn.k_proj.weight": "pytorch_model-00024-of-00053.bin", "model.layers.23.self_attn.v_proj.weight": "pytorch_model-00024-of-00053.bin", "model.layers.23.self_attn.o_proj.weight": "pytorch_model-00024-of-00053.bin", "model.layers.23.self_attn.rotary_emb.inv_freq": "pytorch_model-00024-of-00053.bin", "model.layers.23.mlp.gate_proj.weight": "pytorch_model-00024-of-00053.bin", "model.layers.23.mlp.up_proj.weight": "pytorch_model-00024-of-00053.bin", "model.layers.23.mlp.down_proj.weight": "pytorch_model-00024-of-00053.bin", "model.layers.24.input_layernorm.weight": "pytorch_model-00025-of-00053.bin", "model.layers.24.post_attention_layernorm.weight": "pytorch_model-00025-of-00053.bin", "model.layers.24.self_attn.q_proj.weight": "pytorch_model-00025-of-00053.bin", "model.layers.24.self_attn.k_proj.weight": "pytorch_model-00025-of-00053.bin", "model.layers.24.self_attn.v_proj.weight": "pytorch_model-00025-of-00053.bin", "model.layers.24.self_attn.o_proj.weight": "pytorch_model-00025-of-00053.bin", "model.layers.24.self_attn.rotary_emb.inv_freq": "pytorch_model-00025-of-00053.bin", "model.layers.24.mlp.gate_proj.weight": "pytorch_model-00025-of-00053.bin", "model.layers.24.mlp.up_proj.weight": "pytorch_model-00025-of-00053.bin", "model.layers.24.mlp.down_proj.weight": "pytorch_model-00025-of-00053.bin", "model.layers.25.input_layernorm.weight": "pytorch_model-00026-of-00053.bin", "model.layers.25.post_attention_layernorm.weight": "pytorch_model-00026-of-00053.bin", "model.layers.25.self_attn.q_proj.weight": "pytorch_model-00026-of-00053.bin", "model.layers.25.self_attn.k_proj.weight": "pytorch_model-00026-of-00053.bin", "model.layers.25.self_attn.v_proj.weight": "pytorch_model-00026-of-00053.bin", "model.layers.25.self_attn.o_proj.weight": "pytorch_model-00026-of-00053.bin", "model.layers.25.self_attn.rotary_emb.inv_freq": "pytorch_model-00026-of-00053.bin", "model.layers.25.mlp.gate_proj.weight": "pytorch_model-00026-of-00053.bin", "model.layers.25.mlp.up_proj.weight": "pytorch_model-00026-of-00053.bin", "model.layers.25.mlp.down_proj.weight": "pytorch_model-00026-of-00053.bin", "model.layers.26.input_layernorm.weight": "pytorch_model-00027-of-00053.bin", "model.layers.26.post_attention_layernorm.weight": "pytorch_model-00027-of-00053.bin", "model.layers.26.self_attn.q_proj.weight": "pytorch_model-00027-of-00053.bin", "model.layers.26.self_attn.k_proj.weight": "pytorch_model-00027-of-00053.bin", "model.layers.26.self_attn.v_proj.weight": "pytorch_model-00027-of-00053.bin", "model.layers.26.self_attn.o_proj.weight": "pytorch_model-00027-of-00053.bin", "model.layers.26.self_attn.rotary_emb.inv_freq": "pytorch_model-00027-of-00053.bin", "model.layers.26.mlp.gate_proj.weight": "pytorch_model-00027-of-00053.bin", "model.layers.26.mlp.up_proj.weight": "pytorch_model-00027-of-00053.bin", "model.layers.26.mlp.down_proj.weight": "pytorch_model-00027-of-00053.bin", "model.layers.27.input_layernorm.weight": "pytorch_model-00028-of-00053.bin", "model.layers.27.post_attention_layernorm.weight": "pytorch_model-00028-of-00053.bin", "model.layers.27.self_attn.q_proj.weight": "pytorch_model-00028-of-00053.bin", "model.layers.27.self_attn.k_proj.weight": "pytorch_model-00028-of-00053.bin", "model.layers.27.self_attn.v_proj.weight": "pytorch_model-00028-of-00053.bin", "model.layers.27.self_attn.o_proj.weight": "pytorch_model-00028-of-00053.bin", "model.layers.27.self_attn.rotary_emb.inv_freq": "pytorch_model-00028-of-00053.bin", "model.layers.27.mlp.gate_proj.weight": "pytorch_model-00028-of-00053.bin", "model.layers.27.mlp.up_proj.weight": "pytorch_model-00028-of-00053.bin", "model.layers.27.mlp.down_proj.weight": "pytorch_model-00028-of-00053.bin", "model.layers.28.input_layernorm.weight": "pytorch_model-00029-of-00053.bin", "model.layers.28.post_attention_layernorm.weight": "pytorch_model-00029-of-00053.bin", "model.layers.28.self_attn.q_proj.weight": "pytorch_model-00029-of-00053.bin", "model.layers.28.self_attn.k_proj.weight": "pytorch_model-00029-of-00053.bin", "model.layers.28.self_attn.v_proj.weight": "pytorch_model-00029-of-00053.bin", "model.layers.28.self_attn.o_proj.weight": "pytorch_model-00029-of-00053.bin", "model.layers.28.self_attn.rotary_emb.inv_freq": "pytorch_model-00029-of-00053.bin", "model.layers.28.mlp.gate_proj.weight": "pytorch_model-00029-of-00053.bin", "model.layers.28.mlp.up_proj.weight": "pytorch_model-00029-of-00053.bin", "model.layers.28.mlp.down_proj.weight": "pytorch_model-00029-of-00053.bin", "model.layers.29.input_layernorm.weight": "pytorch_model-00030-of-00053.bin", "model.layers.29.post_attention_layernorm.weight": "pytorch_model-00030-of-00053.bin", "model.layers.29.self_attn.q_proj.weight": "pytorch_model-00030-of-00053.bin", "model.layers.29.self_attn.k_proj.weight": "pytorch_model-00030-of-00053.bin", "model.layers.29.self_attn.v_proj.weight": "pytorch_model-00030-of-00053.bin", "model.layers.29.self_attn.o_proj.weight": "pytorch_model-00030-of-00053.bin", "model.layers.29.self_attn.rotary_emb.inv_freq": "pytorch_model-00030-of-00053.bin", "model.layers.29.mlp.gate_proj.weight": "pytorch_model-00030-of-00053.bin", "model.layers.29.mlp.up_proj.weight": "pytorch_model-00030-of-00053.bin", "model.layers.29.mlp.down_proj.weight": "pytorch_model-00030-of-00053.bin", "model.layers.30.input_layernorm.weight": "pytorch_model-00031-of-00053.bin", "model.layers.30.post_attention_layernorm.weight": "pytorch_model-00031-of-00053.bin", "model.layers.30.self_attn.q_proj.weight": "pytorch_model-00031-of-00053.bin", "model.layers.30.self_attn.k_proj.weight": "pytorch_model-00031-of-00053.bin", "model.layers.30.self_attn.v_proj.weight": "pytorch_model-00031-of-00053.bin", "model.layers.30.self_attn.o_proj.weight": "pytorch_model-00031-of-00053.bin", "model.layers.30.self_attn.rotary_emb.inv_freq": "pytorch_model-00031-of-00053.bin", "model.layers.30.mlp.gate_proj.weight": "pytorch_model-00031-of-00053.bin", "model.layers.30.mlp.up_proj.weight": "pytorch_model-00031-of-00053.bin", "model.layers.30.mlp.down_proj.weight": "pytorch_model-00031-of-00053.bin", "model.layers.31.input_layernorm.weight": "pytorch_model-00032-of-00053.bin", "model.layers.31.post_attention_layernorm.weight": "pytorch_model-00032-of-00053.bin", "model.layers.31.self_attn.q_proj.weight": "pytorch_model-00032-of-00053.bin", "model.layers.31.self_attn.k_proj.weight": "pytorch_model-00032-of-00053.bin", "model.layers.31.self_attn.v_proj.weight": "pytorch_model-00032-of-00053.bin", "model.layers.31.self_attn.o_proj.weight": "pytorch_model-00032-of-00053.bin", "model.layers.31.self_attn.rotary_emb.inv_freq": "pytorch_model-00032-of-00053.bin", "model.layers.31.mlp.gate_proj.weight": "pytorch_model-00032-of-00053.bin", "model.layers.31.mlp.up_proj.weight": "pytorch_model-00032-of-00053.bin", "model.layers.31.mlp.down_proj.weight": "pytorch_model-00032-of-00053.bin", "model.layers.32.input_layernorm.weight": "pytorch_model-00033-of-00053.bin", "model.layers.32.post_attention_layernorm.weight": "pytorch_model-00033-of-00053.bin", "model.layers.32.self_attn.q_proj.weight": "pytorch_model-00033-of-00053.bin", "model.layers.32.self_attn.k_proj.weight": "pytorch_model-00033-of-00053.bin", "model.layers.32.self_attn.v_proj.weight": "pytorch_model-00033-of-00053.bin", "model.layers.32.self_attn.o_proj.weight": "pytorch_model-00033-of-00053.bin", "model.layers.32.self_attn.rotary_emb.inv_freq": "pytorch_model-00033-of-00053.bin", "model.layers.32.mlp.gate_proj.weight": "pytorch_model-00033-of-00053.bin", "model.layers.32.mlp.up_proj.weight": "pytorch_model-00033-of-00053.bin", "model.layers.32.mlp.down_proj.weight": "pytorch_model-00033-of-00053.bin", "model.layers.33.input_layernorm.weight": "pytorch_model-00034-of-00053.bin", "model.layers.33.post_attention_layernorm.weight": "pytorch_model-00034-of-00053.bin", "model.layers.33.self_attn.q_proj.weight": "pytorch_model-00034-of-00053.bin", "model.layers.33.self_attn.k_proj.weight": "pytorch_model-00034-of-00053.bin", "model.layers.33.self_attn.v_proj.weight": "pytorch_model-00034-of-00053.bin", "model.layers.33.self_attn.o_proj.weight": "pytorch_model-00034-of-00053.bin", "model.layers.33.self_attn.rotary_emb.inv_freq": "pytorch_model-00034-of-00053.bin", "model.layers.33.mlp.gate_proj.weight": "pytorch_model-00034-of-00053.bin", "model.layers.33.mlp.up_proj.weight": "pytorch_model-00034-of-00053.bin", "model.layers.33.mlp.down_proj.weight": "pytorch_model-00034-of-00053.bin", "model.layers.34.input_layernorm.weight": "pytorch_model-00035-of-00053.bin", "model.layers.34.post_attention_layernorm.weight": "pytorch_model-00035-of-00053.bin", "model.layers.34.self_attn.q_proj.weight": "pytorch_model-00035-of-00053.bin", "model.layers.34.self_attn.k_proj.weight": "pytorch_model-00035-of-00053.bin", "model.layers.34.self_attn.v_proj.weight": "pytorch_model-00035-of-00053.bin", "model.layers.34.self_attn.o_proj.weight": "pytorch_model-00035-of-00053.bin", "model.layers.34.self_attn.rotary_emb.inv_freq": "pytorch_model-00035-of-00053.bin", "model.layers.34.mlp.gate_proj.weight": "pytorch_model-00035-of-00053.bin", "model.layers.34.mlp.up_proj.weight": "pytorch_model-00035-of-00053.bin", "model.layers.34.mlp.down_proj.weight": "pytorch_model-00035-of-00053.bin", "model.layers.35.input_layernorm.weight": "pytorch_model-00036-of-00053.bin", "model.layers.35.post_attention_layernorm.weight": "pytorch_model-00036-of-00053.bin", "model.layers.35.self_attn.q_proj.weight": "pytorch_model-00036-of-00053.bin", "model.layers.35.self_attn.k_proj.weight": "pytorch_model-00036-of-00053.bin", "model.layers.35.self_attn.v_proj.weight": "pytorch_model-00036-of-00053.bin", "model.layers.35.self_attn.o_proj.weight": "pytorch_model-00036-of-00053.bin", "model.layers.35.self_attn.rotary_emb.inv_freq": "pytorch_model-00036-of-00053.bin", "model.layers.35.mlp.gate_proj.weight": "pytorch_model-00036-of-00053.bin", "model.layers.35.mlp.up_proj.weight": "pytorch_model-00036-of-00053.bin", "model.layers.35.mlp.down_proj.weight": "pytorch_model-00036-of-00053.bin", "model.layers.36.input_layernorm.weight": "pytorch_model-00037-of-00053.bin", "model.layers.36.post_attention_layernorm.weight": "pytorch_model-00037-of-00053.bin", "model.layers.36.self_attn.q_proj.weight": "pytorch_model-00037-of-00053.bin", "model.layers.36.self_attn.k_proj.weight": "pytorch_model-00037-of-00053.bin", "model.layers.36.self_attn.v_proj.weight": "pytorch_model-00037-of-00053.bin", "model.layers.36.self_attn.o_proj.weight": "pytorch_model-00037-of-00053.bin", "model.layers.36.self_attn.rotary_emb.inv_freq": "pytorch_model-00037-of-00053.bin", "model.layers.36.mlp.gate_proj.weight": "pytorch_model-00037-of-00053.bin", "model.layers.36.mlp.up_proj.weight": "pytorch_model-00037-of-00053.bin", "model.layers.36.mlp.down_proj.weight": "pytorch_model-00037-of-00053.bin", "model.layers.37.input_layernorm.weight": "pytorch_model-00038-of-00053.bin", "model.layers.37.post_attention_layernorm.weight": "pytorch_model-00038-of-00053.bin", "model.layers.37.self_attn.q_proj.weight": "pytorch_model-00038-of-00053.bin", "model.layers.37.self_attn.k_proj.weight": "pytorch_model-00038-of-00053.bin", "model.layers.37.self_attn.v_proj.weight": "pytorch_model-00038-of-00053.bin", "model.layers.37.self_attn.o_proj.weight": "pytorch_model-00038-of-00053.bin", "model.layers.37.self_attn.rotary_emb.inv_freq": "pytorch_model-00038-of-00053.bin", "model.layers.37.mlp.gate_proj.weight": "pytorch_model-00038-of-00053.bin", "model.layers.37.mlp.up_proj.weight": "pytorch_model-00038-of-00053.bin", "model.layers.37.mlp.down_proj.weight": "pytorch_model-00038-of-00053.bin", "model.layers.38.input_layernorm.weight": "pytorch_model-00039-of-00053.bin", "model.layers.38.post_attention_layernorm.weight": "pytorch_model-00039-of-00053.bin", "model.layers.38.self_attn.q_proj.weight": "pytorch_model-00039-of-00053.bin", "model.layers.38.self_attn.k_proj.weight": "pytorch_model-00039-of-00053.bin", "model.layers.38.self_attn.v_proj.weight": "pytorch_model-00039-of-00053.bin", "model.layers.38.self_attn.o_proj.weight": "pytorch_model-00039-of-00053.bin", "model.layers.38.self_attn.rotary_emb.inv_freq": "pytorch_model-00039-of-00053.bin", "model.layers.38.mlp.gate_proj.weight": "pytorch_model-00039-of-00053.bin", "model.layers.38.mlp.up_proj.weight": "pytorch_model-00039-of-00053.bin", "model.layers.38.mlp.down_proj.weight": "pytorch_model-00039-of-00053.bin", "model.layers.39.input_layernorm.weight": "pytorch_model-00040-of-00053.bin", "model.layers.39.post_attention_layernorm.weight": "pytorch_model-00040-of-00053.bin", "model.layers.39.self_attn.q_proj.weight": "pytorch_model-00040-of-00053.bin", "model.layers.39.self_attn.k_proj.weight": "pytorch_model-00040-of-00053.bin", "model.layers.39.self_attn.v_proj.weight": "pytorch_model-00040-of-00053.bin", "model.layers.39.self_attn.o_proj.weight": "pytorch_model-00040-of-00053.bin", "model.layers.39.self_attn.rotary_emb.inv_freq": "pytorch_model-00040-of-00053.bin", "model.layers.39.mlp.gate_proj.weight": "pytorch_model-00040-of-00053.bin", "model.layers.39.mlp.up_proj.weight": "pytorch_model-00040-of-00053.bin", "model.layers.39.mlp.down_proj.weight": "pytorch_model-00040-of-00053.bin", "model.layers.40.input_layernorm.weight": "pytorch_model-00041-of-00053.bin", "model.layers.40.post_attention_layernorm.weight": "pytorch_model-00041-of-00053.bin", "model.layers.40.self_attn.q_proj.weight": "pytorch_model-00041-of-00053.bin", "model.layers.40.self_attn.k_proj.weight": "pytorch_model-00041-of-00053.bin", "model.layers.40.self_attn.v_proj.weight": "pytorch_model-00041-of-00053.bin", "model.layers.40.self_attn.o_proj.weight": "pytorch_model-00041-of-00053.bin", "model.layers.40.self_attn.rotary_emb.inv_freq": "pytorch_model-00041-of-00053.bin", "model.layers.40.mlp.gate_proj.weight": "pytorch_model-00041-of-00053.bin", "model.layers.40.mlp.up_proj.weight": "pytorch_model-00041-of-00053.bin", "model.layers.40.mlp.down_proj.weight": "pytorch_model-00041-of-00053.bin", "model.layers.41.input_layernorm.weight": "pytorch_model-00042-of-00053.bin", "model.layers.41.post_attention_layernorm.weight": "pytorch_model-00042-of-00053.bin", "model.layers.41.self_attn.q_proj.weight": "pytorch_model-00042-of-00053.bin", "model.layers.41.self_attn.k_proj.weight": "pytorch_model-00042-of-00053.bin", "model.layers.41.self_attn.v_proj.weight": "pytorch_model-00042-of-00053.bin", "model.layers.41.self_attn.o_proj.weight": "pytorch_model-00042-of-00053.bin", "model.layers.41.self_attn.rotary_emb.inv_freq": "pytorch_model-00042-of-00053.bin", "model.layers.41.mlp.gate_proj.weight": "pytorch_model-00042-of-00053.bin", "model.layers.41.mlp.up_proj.weight": "pytorch_model-00042-of-00053.bin", "model.layers.41.mlp.down_proj.weight": "pytorch_model-00042-of-00053.bin", "model.layers.42.input_layernorm.weight": "pytorch_model-00043-of-00053.bin", "model.layers.42.post_attention_layernorm.weight": "pytorch_model-00043-of-00053.bin", "model.layers.42.self_attn.q_proj.weight": "pytorch_model-00043-of-00053.bin", "model.layers.42.self_attn.k_proj.weight": "pytorch_model-00043-of-00053.bin", "model.layers.42.self_attn.v_proj.weight": "pytorch_model-00043-of-00053.bin", "model.layers.42.self_attn.o_proj.weight": "pytorch_model-00043-of-00053.bin", "model.layers.42.self_attn.rotary_emb.inv_freq": "pytorch_model-00043-of-00053.bin", "model.layers.42.mlp.gate_proj.weight": "pytorch_model-00043-of-00053.bin", "model.layers.42.mlp.up_proj.weight": "pytorch_model-00043-of-00053.bin", "model.layers.42.mlp.down_proj.weight": "pytorch_model-00043-of-00053.bin", "model.layers.43.input_layernorm.weight": "pytorch_model-00044-of-00053.bin", "model.layers.43.post_attention_layernorm.weight": "pytorch_model-00044-of-00053.bin", "model.layers.43.self_attn.q_proj.weight": "pytorch_model-00044-of-00053.bin", "model.layers.43.self_attn.k_proj.weight": "pytorch_model-00044-of-00053.bin", "model.layers.43.self_attn.v_proj.weight": "pytorch_model-00044-of-00053.bin", "model.layers.43.self_attn.o_proj.weight": "pytorch_model-00044-of-00053.bin", "model.layers.43.self_attn.rotary_emb.inv_freq": "pytorch_model-00044-of-00053.bin", "model.layers.43.mlp.gate_proj.weight": "pytorch_model-00044-of-00053.bin", "model.layers.43.mlp.up_proj.weight": "pytorch_model-00044-of-00053.bin", "model.layers.43.mlp.down_proj.weight": "pytorch_model-00044-of-00053.bin", "model.layers.44.input_layernorm.weight": "pytorch_model-00045-of-00053.bin", "model.layers.44.post_attention_layernorm.weight": "pytorch_model-00045-of-00053.bin", "model.layers.44.self_attn.q_proj.weight": "pytorch_model-00045-of-00053.bin", "model.layers.44.self_attn.k_proj.weight": "pytorch_model-00045-of-00053.bin", "model.layers.44.self_attn.v_proj.weight": "pytorch_model-00045-of-00053.bin", "model.layers.44.self_attn.o_proj.weight": "pytorch_model-00045-of-00053.bin", "model.layers.44.self_attn.rotary_emb.inv_freq": "pytorch_model-00045-of-00053.bin", "model.layers.44.mlp.gate_proj.weight": "pytorch_model-00045-of-00053.bin", "model.layers.44.mlp.up_proj.weight": "pytorch_model-00045-of-00053.bin", "model.layers.44.mlp.down_proj.weight": "pytorch_model-00045-of-00053.bin", "model.layers.45.input_layernorm.weight": "pytorch_model-00046-of-00053.bin", "model.layers.45.post_attention_layernorm.weight": "pytorch_model-00046-of-00053.bin", "model.layers.45.self_attn.q_proj.weight": "pytorch_model-00046-of-00053.bin", "model.layers.45.self_attn.k_proj.weight": "pytorch_model-00046-of-00053.bin", "model.layers.45.self_attn.v_proj.weight": "pytorch_model-00046-of-00053.bin", "model.layers.45.self_attn.o_proj.weight": "pytorch_model-00046-of-00053.bin", "model.layers.45.self_attn.rotary_emb.inv_freq": "pytorch_model-00046-of-00053.bin", "model.layers.45.mlp.gate_proj.weight": "pytorch_model-00046-of-00053.bin", "model.layers.45.mlp.up_proj.weight": "pytorch_model-00046-of-00053.bin", "model.layers.45.mlp.down_proj.weight": "pytorch_model-00046-of-00053.bin", "model.layers.46.input_layernorm.weight": "pytorch_model-00047-of-00053.bin", "model.layers.46.post_attention_layernorm.weight": "pytorch_model-00047-of-00053.bin", "model.layers.46.self_attn.q_proj.weight": "pytorch_model-00047-of-00053.bin", "model.layers.46.self_attn.k_proj.weight": "pytorch_model-00047-of-00053.bin", "model.layers.46.self_attn.v_proj.weight": "pytorch_model-00047-of-00053.bin", "model.layers.46.self_attn.o_proj.weight": "pytorch_model-00047-of-00053.bin", "model.layers.46.self_attn.rotary_emb.inv_freq": "pytorch_model-00047-of-00053.bin", "model.layers.46.mlp.gate_proj.weight": "pytorch_model-00047-of-00053.bin", "model.layers.46.mlp.up_proj.weight": "pytorch_model-00047-of-00053.bin", "model.layers.46.mlp.down_proj.weight": "pytorch_model-00047-of-00053.bin", "model.layers.47.input_layernorm.weight": "pytorch_model-00048-of-00053.bin", "model.layers.47.post_attention_layernorm.weight": "pytorch_model-00048-of-00053.bin", "model.layers.47.self_attn.q_proj.weight": "pytorch_model-00048-of-00053.bin", "model.layers.47.self_attn.k_proj.weight": "pytorch_model-00048-of-00053.bin", "model.layers.47.self_attn.v_proj.weight": "pytorch_model-00048-of-00053.bin", "model.layers.47.self_attn.o_proj.weight": "pytorch_model-00048-of-00053.bin", "model.layers.47.self_attn.rotary_emb.inv_freq": "pytorch_model-00048-of-00053.bin", "model.layers.47.mlp.gate_proj.weight": "pytorch_model-00048-of-00053.bin", "model.layers.47.mlp.up_proj.weight": "pytorch_model-00048-of-00053.bin", "model.layers.47.mlp.down_proj.weight": "pytorch_model-00048-of-00053.bin", "model.layers.48.input_layernorm.weight": "pytorch_model-00049-of-00053.bin", "model.layers.48.post_attention_layernorm.weight": "pytorch_model-00049-of-00053.bin", "model.layers.48.self_attn.q_proj.weight": "pytorch_model-00049-of-00053.bin", "model.layers.48.self_attn.k_proj.weight": "pytorch_model-00049-of-00053.bin", "model.layers.48.self_attn.v_proj.weight": "pytorch_model-00049-of-00053.bin", "model.layers.48.self_attn.o_proj.weight": "pytorch_model-00049-of-00053.bin", "model.layers.48.self_attn.rotary_emb.inv_freq": "pytorch_model-00049-of-00053.bin", "model.layers.48.mlp.gate_proj.weight": "pytorch_model-00049-of-00053.bin", "model.layers.48.mlp.up_proj.weight": "pytorch_model-00049-of-00053.bin", "model.layers.48.mlp.down_proj.weight": "pytorch_model-00049-of-00053.bin", "model.layers.49.input_layernorm.weight": "pytorch_model-00050-of-00053.bin", "model.layers.49.post_attention_layernorm.weight": "pytorch_model-00050-of-00053.bin", "model.layers.49.self_attn.q_proj.weight": "pytorch_model-00050-of-00053.bin", "model.layers.49.self_attn.k_proj.weight": "pytorch_model-00050-of-00053.bin", "model.layers.49.self_attn.v_proj.weight": "pytorch_model-00050-of-00053.bin", "model.layers.49.self_attn.o_proj.weight": "pytorch_model-00050-of-00053.bin", "model.layers.49.self_attn.rotary_emb.inv_freq": "pytorch_model-00050-of-00053.bin", "model.layers.49.mlp.gate_proj.weight": "pytorch_model-00050-of-00053.bin", "model.layers.49.mlp.up_proj.weight": "pytorch_model-00050-of-00053.bin", "model.layers.49.mlp.down_proj.weight": "pytorch_model-00050-of-00053.bin", "model.layers.50.input_layernorm.weight": "pytorch_model-00051-of-00053.bin", "model.layers.50.post_attention_layernorm.weight": "pytorch_model-00051-of-00053.bin", "model.layers.50.self_attn.q_proj.weight": "pytorch_model-00051-of-00053.bin", "model.layers.50.self_attn.k_proj.weight": "pytorch_model-00051-of-00053.bin", "model.layers.50.self_attn.v_proj.weight": "pytorch_model-00051-of-00053.bin", "model.layers.50.self_attn.o_proj.weight": "pytorch_model-00051-of-00053.bin", "model.layers.50.self_attn.rotary_emb.inv_freq": "pytorch_model-00051-of-00053.bin", "model.layers.50.mlp.gate_proj.weight": "pytorch_model-00051-of-00053.bin", "model.layers.50.mlp.up_proj.weight": "pytorch_model-00051-of-00053.bin", "model.layers.50.mlp.down_proj.weight": "pytorch_model-00051-of-00053.bin", "model.layers.51.input_layernorm.weight": "pytorch_model-00052-of-00053.bin", "model.layers.51.post_attention_layernorm.weight": "pytorch_model-00052-of-00053.bin", "model.layers.51.self_attn.q_proj.weight": "pytorch_model-00052-of-00053.bin", "model.layers.51.self_attn.k_proj.weight": "pytorch_model-00052-of-00053.bin", "model.layers.51.self_attn.v_proj.weight": "pytorch_model-00052-of-00053.bin", "model.layers.51.self_attn.o_proj.weight": "pytorch_model-00052-of-00053.bin", "model.layers.51.self_attn.rotary_emb.inv_freq": "pytorch_model-00052-of-00053.bin", "model.layers.51.mlp.gate_proj.weight": "pytorch_model-00052-of-00053.bin", "model.layers.51.mlp.up_proj.weight": "pytorch_model-00052-of-00053.bin", "model.layers.51.mlp.down_proj.weight": "pytorch_model-00052-of-00053.bin", "model.norm.weight": "pytorch_model-00053-of-00053.bin", "model.embed_tokens.weight": "pytorch_model-00053-of-00053.bin", "lm_head.weight": "pytorch_model-00053-of-00053.bin"}} \ No newline at end of file diff --git a/model_hubs/Skywork-13B-Base-3T/special_tokens_map.json b/model_hubs/Skywork-13B-Base-3T/special_tokens_map.json deleted file mode 100644 index d85ba6cb6820b01226ef8bd40b46bb489041c6a8..0000000000000000000000000000000000000000 --- a/model_hubs/Skywork-13B-Base-3T/special_tokens_map.json +++ /dev/null @@ -1,23 +0,0 @@ -{ - "bos_token": { - "content": "", - "lstrip": false, - "normalized": true, - "rstrip": false, - "single_word": false - }, - "eos_token": { - "content": "", - "lstrip": false, - "normalized": true, - "rstrip": false, - "single_word": false - }, - "unk_token": { - "content": "", - "lstrip": false, - "normalized": true, - "rstrip": false, - "single_word": false - } -} diff --git a/model_hubs/Skywork-13B-Base-3T/tokenization_skywork.py b/model_hubs/Skywork-13B-Base-3T/tokenization_skywork.py deleted file mode 100644 index ac378d77d2d90d17340b3cb8eaf91bdb1656b71d..0000000000000000000000000000000000000000 --- a/model_hubs/Skywork-13B-Base-3T/tokenization_skywork.py +++ /dev/null @@ -1,250 +0,0 @@ -# Copyright (c) SkyworkAI and the HuggingFace Inc. team. All rights reserved. -# This code is built upon Huggingface's transformers repository. - -"""Tokenization classes for Skywork.""" -import os -from shutil import copyfile -from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple - -import sentencepiece as spm - -from transformers.tokenization_utils import AddedToken, PreTrainedTokenizer -from transformers.utils import logging - -if TYPE_CHECKING: - from transformers.pipelines.conversational import Conversation - -logger = logging.get_logger(__name__) - -VOCAB_FILES_NAMES = {"vocab_file": "tokenizer.model"} - - -SPIECE_UNDERLINE = "▁" - -B_INST, E_INST = "[INST]", "[/INST]" -B_SYS, E_SYS = "<>\n", "\n<>\n\n" - -DEFAULT_SYSTEM_PROMPT = """You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure\ -that your responses are socially unbiased and positive in nature. - -If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information.""" - -class SkyworkTokenizer(PreTrainedTokenizer): - - vocab_files_names = VOCAB_FILES_NAMES - # pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP - # max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES - model_input_names = ["input_ids", "attention_mask"] - - def __init__( - self, - vocab_file, - unk_token="", - bos_token="", - eos_token="", - pad_token=None, - sp_model_kwargs: Optional[Dict[str, Any]] = None, - add_bos_token=True, - add_eos_token=False, - clean_up_tokenization_spaces=False, - legacy=True, - **kwargs, - ): - self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs - bos_token = AddedToken(bos_token, lstrip=False, rstrip=False) if isinstance(bos_token, str) else bos_token - eos_token = AddedToken(eos_token, lstrip=False, rstrip=False) if isinstance(eos_token, str) else eos_token - unk_token = AddedToken(unk_token, lstrip=False, rstrip=False) if isinstance(unk_token, str) else unk_token - pad_token = AddedToken(pad_token, lstrip=False, rstrip=False) if isinstance(pad_token, str) else pad_token - self.legacy = legacy - self.vocab_file = vocab_file - self.add_bos_token = add_bos_token - self.add_eos_token = add_eos_token - self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs) - self.sp_model.Load(vocab_file) - super().__init__( - bos_token=bos_token, - eos_token=eos_token, - unk_token=unk_token, - pad_token=pad_token, - add_bos_token=add_bos_token, - add_eos_token=add_eos_token, - sp_model_kwargs=self.sp_model_kwargs, - clean_up_tokenization_spaces=clean_up_tokenization_spaces, - legacy=legacy, - **kwargs, - ) - if legacy: - logger.warning_once( - f"You are using the legacy behaviour of the {self.__class__}. This means that tokens that come after special tokens will not be properly handled. " - ) - - - def __getstate__(self): - state = self.__dict__.copy() - state["sp_model"] = None - state["sp_model_proto"] = self.sp_model.serialized_model_proto() - return state - - def __setstate__(self, d): - self.__dict__ = d - self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs) - self.sp_model.LoadFromSerializedProto(self.sp_model_proto) - - @property - def vocab_size(self): - """Returns vocab size""" - return self.sp_model.get_piece_size() - - def get_vocab(self): - """Returns vocab as a dict""" - vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)} - vocab.update(self.added_tokens_encoder) - return vocab - - # Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.tokenize - def tokenize(self, text, **kwargs) -> List[str]: - # Replace the SPIECE_UNDERLINE with a space to make sure SPIECE_UNDERLINE is only used at - # the beginning of the text - if not self.legacy: - text = SPIECE_UNDERLINE + text.replace(SPIECE_UNDERLINE, " ") - return super().tokenize(text, **kwargs) - - # Copied from transformers.models.t5.tokenization_t5.T5Tokenizer._tokenize - def _tokenize(self, text): - if not self.legacy: - is_first = text.startswith(SPIECE_UNDERLINE) - if is_first: - text = text[1:] - - tokens = self.sp_model.encode(text, out_type=str) - - if not self.legacy and not is_first and not text.startswith(" ") and tokens[0].startswith(SPIECE_UNDERLINE): - tokens = ([tokens[0][1:]] if len(tokens[0]) > 1 else []) + tokens[1:] - return tokens - - def _convert_token_to_id(self, token): - """Converts a token (str) in an id using the vocab.""" - return self.sp_model.piece_to_id(token) - - def _convert_id_to_token(self, index): - """Converts an index (integer) in a token (str) using the vocab.""" - token = self.sp_model.IdToPiece(index) - return token - - def convert_tokens_to_string(self, tokens): - """Converts a sequence of tokens (string) in a single string.""" - current_sub_tokens = [] - out_string = "" - prev_is_special = False - for i, token in enumerate(tokens): - # make sure that special tokens are not decoded using sentencepiece model - if token in self.all_special_tokens: - if not prev_is_special and i != 0: - out_string += " " - out_string += self.sp_model.decode(current_sub_tokens) + token - prev_is_special = True - current_sub_tokens = [] - else: - current_sub_tokens.append(token) - prev_is_special = False - out_string += self.sp_model.decode(current_sub_tokens) - return out_string - - def save_vocabulary(self, save_directory, filename_prefix: Optional[str] = None) -> Tuple[str]: - if not os.path.isdir(save_directory): - logger.error(f"Vocabulary path ({save_directory}) should be a directory") - return - out_vocab_file = os.path.join( - save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] - ) - - if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file): - copyfile(self.vocab_file, out_vocab_file) - elif not os.path.isfile(self.vocab_file): - with open(out_vocab_file, "wb") as fi: - content_spiece_model = self.sp_model.serialized_model_proto() - fi.write(content_spiece_model) - - return (out_vocab_file,) - - def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None): - bos_token_id = [self.bos_token_id] if self.add_bos_token else [] - eos_token_id = [self.eos_token_id] if self.add_eos_token else [] - - output = bos_token_id + token_ids_0 + eos_token_id - - if token_ids_1 is not None: - output = output + bos_token_id + token_ids_1 + eos_token_id - - return output - - def get_special_tokens_mask( - self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False - ) -> List[int]: - if already_has_special_tokens: - return super().get_special_tokens_mask( - token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True - ) - - bos_token_id = [1] if self.add_bos_token else [] - eos_token_id = [1] if self.add_eos_token else [] - - if token_ids_1 is None: - return bos_token_id + ([0] * len(token_ids_0)) + eos_token_id - return ( - bos_token_id - + ([0] * len(token_ids_0)) - + eos_token_id - + bos_token_id - + ([0] * len(token_ids_1)) - + eos_token_id - ) - - def create_token_type_ids_from_sequences( - self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None - ) -> List[int]: - bos_token_id = [self.bos_token_id] if self.add_bos_token else [] - eos_token_id = [self.eos_token_id] if self.add_eos_token else [] - - output = [0] * len(bos_token_id + token_ids_0 + eos_token_id) - - if token_ids_1 is not None: - output += [1] * len(bos_token_id + token_ids_1 + eos_token_id) - - return output - - def _build_conversation_input_ids(self, conversation: "Conversation") -> List[int]: - dialogue = list(conversation.iter_texts()) - if not all([is_user for is_user, msg in dialogue[::2]]) or not all( - [not is_user for is_user, msg in dialogue[1::2]] - ): - raise ValueError( - "The model only supports 'user' and 'assistant' roles, starting with user and alternating (u/a/u/a/u...)" - ) - - dialog_tokens: List[int] = [] - if len(conversation.past_user_inputs) > 0: - if not conversation.past_user_inputs[0].startswith(B_SYS) or E_SYS not in conversation.past_user_inputs[0]: - conversation.past_user_inputs[0] = ( - B_SYS + DEFAULT_SYSTEM_PROMPT + E_SYS + conversation.past_user_inputs[0] - ) - elif not dialogue[0][1].startswith(B_SYS) or E_SYS not in dialogue[0][1]: - dialogue[0] = (dialogue[0][0], B_SYS + DEFAULT_SYSTEM_PROMPT + E_SYS + dialogue[0][1]) - - dialog_tokens += sum( - [ - [self.bos_token_id] - + self.encode( - f"{B_INST} {(prompt[1]).strip()} {E_INST} {(answer[1]).strip()} ", add_special_tokens=False - ) - + [self.eos_token_id] - for prompt, answer in zip(dialogue[::2], dialogue[1::2]) - ], - [], - ) - if not (dialogue[-1][0]): - raise ValueError(f"Last message must be from user, got {dialogue[-1]['role']}") - dialog_tokens += [self.bos_token_id] + self.encode( - f"{B_INST} {(dialogue[-1][1]).strip()} {E_INST}", add_special_tokens=False - ) - return dialog_tokens diff --git a/model_hubs/Skywork-13B-Base-3T/tokenizer.model b/model_hubs/Skywork-13B-Base-3T/tokenizer.model deleted file mode 100644 index decbfe220922d6a38ff52541ef3927b97fb7893e..0000000000000000000000000000000000000000 --- a/model_hubs/Skywork-13B-Base-3T/tokenizer.model +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:36ec9a4d6fd7cc78fbb9e4afd89fb04cba0381b08a842ca0b60826073821f594 -size 994250 diff --git a/model_hubs/Skywork-13B-Base-3T/tokenizer_config.json b/model_hubs/Skywork-13B-Base-3T/tokenizer_config.json deleted file mode 100644 index 9c232b8b78a3ad2ce894b9a17628f3821627ccd7..0000000000000000000000000000000000000000 --- a/model_hubs/Skywork-13B-Base-3T/tokenizer_config.json +++ /dev/null @@ -1,40 +0,0 @@ -{ - "add_bos_token": true, - "add_eos_token": false, - "bos_token": { - "__type": "AddedToken", - "content": "", - "lstrip": false, - "normalized": true, - "rstrip": false, - "single_word": false - }, - "clean_up_tokenization_spaces": false, - "eos_token": { - "__type": "AddedToken", - "content": "", - "lstrip": false, - "normalized": true, - "rstrip": false, - "single_word": false - }, - "legacy": true, - "model_max_length": 1000000000000000019884624838656, - "pad_token": null, - "sp_model_kwargs": {}, - "tokenizer_class": "SkyworkTokenizer", - "unk_token": { - "__type": "AddedToken", - "content": "", - "lstrip": false, - "normalized": true, - "rstrip": false, - "single_word": false - }, - "auto_map": { - "AutoTokenizer": [ - "tokenization_skywork.SkyworkTokenizer", - null - ] - } -}