# Description: This file contains the handcrafted solution for the task of wireframe reconstruction import io from PIL import Image as PImage import numpy as np from collections import defaultdict import cv2 from typing import Tuple, List from scipy.spatial.distance import cdist from hoho.read_write_colmap import read_cameras_binary, read_images_binary, read_points3D_binary from hoho.color_mappings import gestalt_color_mapping, ade20k_color_mapping apex_color = gestalt_color_mapping["apex"] eave_end_point = gestalt_color_mapping["eave_end_point"] flashing_end_point = gestalt_color_mapping["flashing_end_point"] apex_color, eave_end_point, flashing_end_point = [np.array(i) for i in [apex_color, eave_end_point, flashing_end_point]] unclassified = np.array([(215, 62, 138)]) line_classes = ['eave', 'ridge', 'rake', 'valley'] def empty_solution(): '''Return a minimal valid solution, i.e. 2 vertices and 1 edge.''' return np.zeros((2,3)), [(0, 1)] def undesired_objects(image): image = image.astype('uint8') nb_components, output, stats, centroids = cv2.connectedComponentsWithStats(image, connectivity=8) sizes = stats[:, -1] max_label = 1 max_size = sizes[1] for i in range(2, nb_components): if sizes[i] > max_size: max_label = i max_size = sizes[i] img2 = np.zeros(output.shape) img2[output == max_label] = 1 return img2 def clean_image(image_gestalt) -> np.ndarray: # clears image in from of unclassified and disconected components image_gestalt = np.array(image_gestalt) unclassified_mask = cv2.inRange(image_gestalt, unclassified + 0.0, unclassified + 0.8) unclassified_mask = cv2.bitwise_not(unclassified_mask) mask = undesired_objects(unclassified_mask).astype(np.uint8) mask = cv2.morphologyEx(mask, cv2.MORPH_CLOSE, np.ones((11, 11), np.uint8), iterations=11) image_gestalt[:, :, 0] *= mask image_gestalt[:, :, 1] *= mask image_gestalt[:, :, 2] *= mask return image_gestalt def get_vertices(image_gestalt, *, color_range=4., dialations=3, erosions=1, kernel_size=13): apex_mask = cv2.inRange(image_gestalt, apex_color - color_range, apex_color + color_range) eave_end_point_mask = cv2.inRange(image_gestalt, eave_end_point - color_range, eave_end_point + color_range) flashing_end_point_mask = cv2.inRange(image_gestalt, flashing_end_point - color_range, flashing_end_point + color_range) eave_end_point_mask = cv2.bitwise_or(eave_end_point_mask, flashing_end_point_mask) kernel = np.ones((kernel_size, kernel_size), np.uint8) apex_mask = cv2.morphologyEx(apex_mask, cv2.MORPH_DILATE, kernel, iterations=dialations) apex_mask = cv2.morphologyEx(apex_mask, cv2.MORPH_ERODE, kernel, iterations=erosions) eave_end_point_mask = cv2.morphologyEx(eave_end_point_mask, cv2.MORPH_DILATE, kernel, iterations=dialations) eave_end_point_mask = cv2.morphologyEx(eave_end_point_mask, cv2.MORPH_ERODE, kernel, iterations=erosions) *_, apex_centroids = cv2.connectedComponentsWithStats(apex_mask, connectivity=8) *_, other_centroids = cv2.connectedComponentsWithStats(eave_end_point_mask, connectivity=8) return [apex_centroids[1:], other_centroids[1:]] def convert_entry_to_human_readable(entry): out = {} already_good = ['__key__', 'wf_vertices', 'wf_edges', 'edge_semantics', 'mesh_vertices', 'mesh_faces', 'face_semantics', 'K', 'R', 't'] for k, v in entry.items(): if k in already_good: out[k] = v continue if k == 'points3d': out[k] = read_points3D_binary(fid=io.BytesIO(v)) if k == 'cameras': out[k] = read_cameras_binary(fid=io.BytesIO(v)) if k == 'images': out[k] = read_images_binary(fid=io.BytesIO(v)) if k in ['ade20k', 'gestalt']: out[k] = [PImage.open(io.BytesIO(x)).convert('RGB') for x in v] if k == 'depthcm': out[k] = [PImage.open(io.BytesIO(x)) for x in entry['depthcm']] return out def get_vertices_and_edges_from_segmentation(gest_seg_np, edge_th = 50.0): '''Get the vertices and edges from the gestalt segmentation mask of the house''' connections = [] # Apex gest_seg_np = clean_image(gest_seg_np) apex_centroids, eave_end_point_centroids = get_vertices(gest_seg_np) apex_pts = np.concatenate([apex_centroids, eave_end_point_centroids]) # Ridge connects two apex points for edge_class in ['eave', 'ridge', 'rake', 'valley']: edge_color = np.array(gestalt_color_mapping[edge_class]) mask = cv2.morphologyEx(cv2.inRange(gest_seg_np, edge_color-0.5, edge_color+0.5), cv2.MORPH_DILATE, np.ones((11, 11))) line_img = np.copy(gest_seg_np) * 0 if mask.sum() > 0: output = cv2.connectedComponentsWithStats(mask, 8, cv2.CV_32S) (numLabels, labels, stats, centroids) = output stats, centroids = stats[1:], centroids[1:] edges = [] for i in range(1, numLabels): y,x = np.where(labels == i) xleft_idx = np.argmin(x) x_left = x[xleft_idx] y_left = y[xleft_idx] xright_idx = np.argmax(x) x_right = x[xright_idx] y_right = y[xright_idx] edges.append((x_left, y_left, x_right, y_right)) cv2.line(line_img, (x_left, y_left), (x_right, y_right), (255, 255, 255), 2) edges = np.array(edges) if (len(apex_pts) < 2) or len(edges) <1: continue pts_to_edges_dist = np.minimum(cdist(apex_pts, edges[:,:2]), cdist(apex_pts, edges[:,2:])) connectivity_mask = pts_to_edges_dist <= edge_th edge_connects = connectivity_mask.sum(axis=0) for edge_idx, edgesum in enumerate(edge_connects): if edgesum>=2: connected_verts = np.where(connectivity_mask[:,edge_idx])[0] for a_i, a in enumerate(connected_verts): for b in connected_verts[a_i+1:]: connections.append((a, b)) vertices = [{"xy": v, "type": "apex"} for v in apex_centroids] vertices += [{"xy": v, "type": "eave_end_point"} for v in eave_end_point_centroids] return vertices, connections def get_uv_depth(vertices, depth): '''Get the depth of the vertices from the depth image''' uv = [] for v in vertices: uv.append(v['xy']) uv = np.array(uv) uv_int = uv.astype(np.int32) H, W = depth.shape[:2] uv_int[:, 0] = np.clip( uv_int[:, 0], 0, W-1) uv_int[:, 1] = np.clip( uv_int[:, 1], 0, H-1) vertex_depth = depth[(uv_int[:, 1] , uv_int[:, 0])] return uv, vertex_depth def merge_vertices_3d(vert_edge_per_image, th=0.1): '''Merge vertices that are close to each other in 3D space and are of same types''' all_3d_vertices = [] connections_3d = [] all_indexes = [] cur_start = 0 types = [] for cimg_idx, (vertices, connections, vertices_3d) in vert_edge_per_image.items(): types += [int(v['type']=='apex') for v in vertices] all_3d_vertices.append(vertices_3d) connections_3d+=[(x+cur_start,y+cur_start) for (x,y) in connections] cur_start+=len(vertices_3d) all_3d_vertices = np.concatenate(all_3d_vertices, axis=0) #print (connections_3d) distmat = cdist(all_3d_vertices, all_3d_vertices) types = np.array(types).reshape(-1,1) same_types = cdist(types, types) mask_to_merge = (distmat <= th) & (same_types==0) new_vertices = [] new_connections = [] to_merge = sorted(list(set([tuple(a.nonzero()[0].tolist()) for a in mask_to_merge]))) to_merge_final = defaultdict(list) for i in range(len(all_3d_vertices)): for j in to_merge: if i in j: to_merge_final[i]+=j for k, v in to_merge_final.items(): to_merge_final[k] = list(set(v)) already_there = set() merged = [] for k, v in to_merge_final.items(): if k in already_there: continue merged.append(v) for vv in v: already_there.add(vv) old_idx_to_new = {} count=0 for idxs in merged: new_vertices.append(all_3d_vertices[idxs].mean(axis=0)) for idx in idxs: old_idx_to_new[idx] = count count +=1 #print (connections_3d) new_vertices=np.array(new_vertices) #print (connections_3d) for conn in connections_3d: new_con = sorted((old_idx_to_new[conn[0]], old_idx_to_new[conn[1]])) if new_con[0] == new_con[1]: continue if new_con not in new_connections: new_connections.append(new_con) #print (f'{len(new_vertices)} left after merging {len(all_3d_vertices)} with {th=}') return new_vertices, new_connections def prune_not_connected(all_3d_vertices, connections_3d): '''Prune vertices that are not connected to any other vertex''' connected = defaultdict(list) for c in connections_3d: connected[c[0]].append(c) connected[c[1]].append(c) new_indexes = {} new_verts = [] connected_out = [] for k,v in connected.items(): vert = all_3d_vertices[k] if tuple(vert) not in new_verts: new_verts.append(tuple(vert)) new_indexes[k]=len(new_verts) -1 for k,v in connected.items(): for vv in v: connected_out.append((new_indexes[vv[0]],new_indexes[vv[1]])) connected_out=list(set(connected_out)) return np.array(new_verts), connected_out def predict(entry, visualize=False) -> Tuple[np.ndarray, List[int]]: good_entry = convert_entry_to_human_readable(entry) vert_edge_per_image = {} for i, (gest, depth, K, R, t) in enumerate(zip(good_entry['gestalt'], good_entry['depthcm'], good_entry['K'], good_entry['R'], good_entry['t'] )): gest_seg = gest.resize(depth.size) gest_seg_np = np.array(gest_seg).astype(np.uint8) # Metric3D depth_np = np.array(depth) / 2.5 # 2.5 is the scale estimation coefficient vertices, connections = get_vertices_and_edges_from_segmentation(gest_seg_np, edge_th = 20.) if (len(vertices) < 2) or (len(connections) < 1): print (f'Not enough vertices or connections in image {i}') vert_edge_per_image[i] = np.empty((0, 2)), [], np.empty((0, 3)) continue uv, depth_vert = get_uv_depth(vertices, depth_np) # Normalize the uv to the camera intrinsics xy_local = np.ones((len(uv), 3)) xy_local[:, 0] = (uv[:, 0] - K[0,2]) / K[0,0] xy_local[:, 1] = (uv[:, 1] - K[1,2]) / K[1,1] # Get the 3D vertices vertices_3d_local = depth_vert[...,None] * (xy_local/np.linalg.norm(xy_local, axis=1)[...,None]) world_to_cam = np.eye(4) world_to_cam[:3, :3] = R world_to_cam[:3, 3] = t.reshape(-1) cam_to_world = np.linalg.inv(world_to_cam) vertices_3d = cv2.transform(cv2.convertPointsToHomogeneous(vertices_3d_local), cam_to_world) vertices_3d = cv2.convertPointsFromHomogeneous(vertices_3d).reshape(-1, 3) vert_edge_per_image[i] = vertices, connections, vertices_3d all_3d_vertices, connections_3d = merge_vertices_3d(vert_edge_per_image, 3.0) all_3d_vertices_clean, connections_3d_clean = prune_not_connected(all_3d_vertices, connections_3d) if (len(all_3d_vertices_clean) < 2) or len(connections_3d_clean) < 1: print (f'Not enough vertices or connections in the 3D vertices') return (good_entry['__key__'], *empty_solution()) if visualize: from hoho.viz3d import plot_estimate_and_gt plot_estimate_and_gt( all_3d_vertices_clean, connections_3d_clean, good_entry['wf_vertices'], good_entry['wf_edges']) return good_entry['__key__'], all_3d_vertices_clean, connections_3d_clean