alias_free_ldm_sr / scheduler /i2sb_scheduler.py
SingleZombie's picture
Create i2sb_scheduler.py
b0ba163 verified
# Copyright 2024 UC Berkeley Team and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim
import math
from dataclasses import dataclass
from typing import List, Optional, Tuple, Union
import numpy as np
import torch
from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.utils import BaseOutput
from diffusers.utils.torch_utils import randn_tensor
from diffusers.schedulers.scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin
@dataclass
class DDPMSchedulerOutput(BaseOutput):
"""
Output class for the scheduler's `step` function output.
Args:
prev_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the
denoising loop.
pred_original_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
The predicted denoised sample `(x_{0})` based on the model output from the current timestep.
`pred_original_sample` can be used to preview progress or for guidance.
"""
prev_sample: torch.Tensor
pred_original_sample: Optional[torch.Tensor] = None
def betas_for_alpha_bar(
num_diffusion_timesteps,
max_beta=0.999,
alpha_transform_type="cosine",
):
"""
Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
(1-beta) over time from t = [0,1].
Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up
to that part of the diffusion process.
Args:
num_diffusion_timesteps (`int`): the number of betas to produce.
max_beta (`float`): the maximum beta to use; use values lower than 1 to
prevent singularities.
alpha_transform_type (`str`, *optional*, default to `cosine`): the type of noise schedule for alpha_bar.
Choose from `cosine` or `exp`
Returns:
betas (`np.ndarray`): the betas used by the scheduler to step the model outputs
"""
if alpha_transform_type == "cosine":
def alpha_bar_fn(t):
return math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2
elif alpha_transform_type == "exp":
def alpha_bar_fn(t):
return math.exp(t * -12.0)
else:
raise ValueError(
f"Unsupported alpha_transform_type: {alpha_transform_type}")
betas = []
for i in range(num_diffusion_timesteps):
t1 = i / num_diffusion_timesteps
t2 = (i + 1) / num_diffusion_timesteps
betas.append(min(1 - alpha_bar_fn(t2) / alpha_bar_fn(t1), max_beta))
return torch.tensor(betas, dtype=torch.float32)
# Copied from diffusers.schedulers.scheduling_ddim.rescale_zero_terminal_snr
def rescale_zero_terminal_snr(betas):
"""
Rescales betas to have zero terminal SNR Based on https://arxiv.org/pdf/2305.08891.pdf (Algorithm 1)
Args:
betas (`torch.Tensor`):
the betas that the scheduler is being initialized with.
Returns:
`torch.Tensor`: rescaled betas with zero terminal SNR
"""
# Convert betas to alphas_bar_sqrt
alphas = 1.0 - betas
alphas_cumprod = torch.cumprod(alphas, dim=0)
alphas_bar_sqrt = alphas_cumprod.sqrt()
# Store old values.
alphas_bar_sqrt_0 = alphas_bar_sqrt[0].clone()
alphas_bar_sqrt_T = alphas_bar_sqrt[-1].clone()
# Shift so the last timestep is zero.
alphas_bar_sqrt -= alphas_bar_sqrt_T
# Scale so the first timestep is back to the old value.
alphas_bar_sqrt *= alphas_bar_sqrt_0 / \
(alphas_bar_sqrt_0 - alphas_bar_sqrt_T)
# Convert alphas_bar_sqrt to betas
alphas_bar = alphas_bar_sqrt**2 # Revert sqrt
alphas = alphas_bar[1:] / alphas_bar[:-1] # Revert cumprod
alphas = torch.cat([alphas_bar[0:1], alphas])
betas = 1 - alphas
return betas
def compute_gaussian_product_coef(sigma1, sigma2):
""" Given p1 = N(x_t|x_0, sigma_1**2) and p2 = N(x_t|x_1, sigma_2**2)
return p1 * p2 = N(x_t| coef1 * x0 + coef2 * x1, var) """
denom = sigma1**2 + sigma2**2
coef1 = sigma2**2 / denom
coef2 = sigma1**2 / denom
var = (sigma1**2 * sigma2**2) / denom
return coef1, coef2, var
class I2SBScheduler(SchedulerMixin, ConfigMixin):
@register_to_config
def __init__(
self,
num_train_timesteps: int = 1000,
beta_start: float = 0.0001,
beta_end: float = 0.02,
beta_schedule: str = "linear",
trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
variance_type: str = "fixed_small",
clip_sample: bool = True,
prediction_type: str = "epsilon",
thresholding: bool = False,
dynamic_thresholding_ratio: float = 0.995,
clip_sample_range: float = 1.0,
sample_max_value: float = 1.0,
timestep_spacing: str = "leading",
steps_offset: int = 0,
rescale_betas_zero_snr: bool = False,
):
if trained_betas is not None:
self.betas = torch.tensor(trained_betas, dtype=torch.float32)
elif beta_schedule == "linear":
self.betas = torch.linspace(
beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
elif beta_schedule == "scaled_linear":
# this schedule is very specific to the latent diffusion model.
self.betas = torch.linspace(
beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
elif beta_schedule == "squaredcos_cap_v2":
# Glide cosine schedule
self.betas = betas_for_alpha_bar(num_train_timesteps)
elif beta_schedule == "sigmoid":
# GeoDiff sigmoid schedule
betas = torch.linspace(-6, 6, num_train_timesteps)
self.betas = torch.sigmoid(
betas) * (beta_end - beta_start) + beta_start
else:
raise NotImplementedError(
f"{beta_schedule} is not implemented for {self.__class__}")
# Rescale for zero SNR
if rescale_betas_zero_snr:
self.betas = rescale_zero_terminal_snr(self.betas)
std_fwd = torch.sqrt(torch.cumsum(self.betas, 0))
std_bwd = torch.sqrt(torch.flip(
torch.cumsum(torch.flip(self.betas, dims=[0]), 0), dims=[0]))
mu_x0, mu_x1, var = compute_gaussian_product_coef(std_fwd, std_bwd)
std_sb = torch.sqrt(var)
self.std_fwd = std_fwd
self.std_bwd = std_bwd
self.std_sb = std_sb
self.mu_x0 = mu_x0
self.mu_x1 = mu_x1
# setable values
self.custom_timesteps = False
self.num_inference_steps = None
self.timesteps = torch.from_numpy(
np.arange(0, num_train_timesteps)[::-1].copy())
self.variance_type = variance_type
def scale_model_input(self, sample: torch.Tensor, timestep: Optional[int] = None) -> torch.Tensor:
"""
Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
current timestep.
Args:
sample (`torch.Tensor`):
The input sample.
timestep (`int`, *optional*):
The current timestep in the diffusion chain.
Returns:
`torch.Tensor`:
A scaled input sample.
"""
return sample
def set_timesteps(
self,
num_inference_steps: Optional[int] = None,
device: Union[str, torch.device] = None,
timesteps: Optional[List[int]] = None,
):
"""
Sets the discrete timesteps used for the diffusion chain (to be run before inference).
Args:
num_inference_steps (`int`):
The number of diffusion steps used when generating samples with a pre-trained model. If used,
`timesteps` must be `None`.
device (`str` or `torch.device`, *optional*):
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
timesteps (`List[int]`, *optional*):
Custom timesteps used to support arbitrary spacing between timesteps. If `None`, then the default
timestep spacing strategy of equal spacing between timesteps is used. If `timesteps` is passed,
`num_inference_steps` must be `None`.
"""
if num_inference_steps is not None and timesteps is not None:
raise ValueError(
"Can only pass one of `num_inference_steps` or `custom_timesteps`.")
if timesteps is not None:
for i in range(1, len(timesteps)):
if timesteps[i] >= timesteps[i - 1]:
raise ValueError(
"`custom_timesteps` must be in descending order.")
if timesteps[0] >= self.config.num_train_timesteps:
raise ValueError(
f"`timesteps` must start before `self.config.train_timesteps`:"
f" {self.config.num_train_timesteps}."
)
timesteps = np.array(timesteps, dtype=np.int64)
self.custom_timesteps = True
else:
if num_inference_steps > self.config.num_train_timesteps:
raise ValueError(
f"`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:"
f" {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle"
f" maximal {self.config.num_train_timesteps} timesteps."
)
self.num_inference_steps = num_inference_steps
self.custom_timesteps = False
# "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891
if self.config.timestep_spacing == "linspace":
timesteps = (
np.linspace(0, self.config.num_train_timesteps -
1, num_inference_steps)
.round()[::-1]
.copy()
.astype(np.int64)
)
elif self.config.timestep_spacing == "leading":
step_ratio = self.config.num_train_timesteps // self.num_inference_steps
# creates integer timesteps by multiplying by ratio
# casting to int to avoid issues when num_inference_step is power of 3
timesteps = (np.arange(0, num_inference_steps) *
step_ratio).round()[::-1].copy().astype(np.int64)
timesteps += self.config.steps_offset
elif self.config.timestep_spacing == "trailing":
step_ratio = self.config.num_train_timesteps / self.num_inference_steps
# creates integer timesteps by multiplying by ratio
# casting to int to avoid issues when num_inference_step is power of 3
timesteps = np.round(
np.arange(self.config.num_train_timesteps, 0, -step_ratio)).astype(np.int64)
timesteps -= 1
else:
raise ValueError(
f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'."
)
self.timesteps = torch.from_numpy(timesteps).to(device)
def _get_variance(self, t, predicted_variance=None, variance_type=None):
prev_t = self.previous_timestep(t)
alpha_prod_t = self.alphas_cumprod[t]
alpha_prod_t_prev = self.alphas_cumprod[prev_t] if prev_t >= 0 else self.one
current_beta_t = 1 - alpha_prod_t / alpha_prod_t_prev
# For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf)
# and sample from it to get previous sample
# x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample
variance = (1 - alpha_prod_t_prev) / \
(1 - alpha_prod_t) * current_beta_t
# we always take the log of variance, so clamp it to ensure it's not 0
variance = torch.clamp(variance, min=1e-20)
if variance_type is None:
variance_type = self.config.variance_type
# hacks - were probably added for training stability
if variance_type == "fixed_small":
variance = variance
# for rl-diffuser https://arxiv.org/abs/2205.09991
elif variance_type == "fixed_small_log":
variance = torch.log(variance)
variance = torch.exp(0.5 * variance)
elif variance_type == "fixed_large":
variance = current_beta_t
elif variance_type == "fixed_large_log":
# Glide max_log
variance = torch.log(current_beta_t)
elif variance_type == "learned":
return predicted_variance
elif variance_type == "learned_range":
min_log = torch.log(variance)
max_log = torch.log(current_beta_t)
frac = (predicted_variance + 1) / 2
variance = frac * max_log + (1 - frac) * min_log
return variance
def _threshold_sample(self, sample: torch.Tensor) -> torch.Tensor:
"""
"Dynamic thresholding: At each sampling step we set s to a certain percentile absolute pixel value in xt0 (the
prediction of x_0 at timestep t), and if s > 1, then we threshold xt0 to the range [-s, s] and then divide by
s. Dynamic thresholding pushes saturated pixels (those near -1 and 1) inwards, thereby actively preventing
pixels from saturation at each step. We find that dynamic thresholding results in significantly better
photorealism as well as better image-text alignment, especially when using very large guidance weights."
https://arxiv.org/abs/2205.11487
"""
dtype = sample.dtype
batch_size, channels, *remaining_dims = sample.shape
if dtype not in (torch.float32, torch.float64):
# upcast for quantile calculation, and clamp not implemented for cpu half
sample = sample.float()
# Flatten sample for doing quantile calculation along each image
sample = sample.reshape(batch_size, channels * np.prod(remaining_dims))
abs_sample = sample.abs() # "a certain percentile absolute pixel value"
s = torch.quantile(
abs_sample, self.config.dynamic_thresholding_ratio, dim=1)
s = torch.clamp(
s, min=1, max=self.config.sample_max_value
) # When clamped to min=1, equivalent to standard clipping to [-1, 1]
# (batch_size, 1) because clamp will broadcast along dim=0
s = s.unsqueeze(1)
# "we threshold xt0 to the range [-s, s] and then divide by s"
sample = torch.clamp(sample, -s, s) / s
sample = sample.reshape(batch_size, channels, *remaining_dims)
sample = sample.to(dtype)
return sample
def step(
self,
model_output: torch.Tensor,
timestep: int,
sample: torch.Tensor,
is_ode: bool = False,
generator=None,
return_dict: bool = True,
) -> Union[DDPMSchedulerOutput, Tuple]:
"""
Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion
process from the learned model outputs (most often the predicted noise).
Args:
model_output (`torch.Tensor`):
The direct output from learned diffusion model.
timestep (`float`):
The current discrete timestep in the diffusion chain.
sample (`torch.Tensor`):
A current instance of a sample created by the diffusion process.
generator (`torch.Generator`, *optional*):
A random number generator.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~schedulers.scheduling_ddpm.DDPMSchedulerOutput`] or `tuple`.
Returns:
[`~schedulers.scheduling_ddpm.DDPMSchedulerOutput`] or `tuple`:
If return_dict is `True`, [`~schedulers.scheduling_ddpm.DDPMSchedulerOutput`] is returned, otherwise a
tuple is returned where the first element is the sample tensor.
"""
t = timestep
prev_t = self.previous_timestep(t)
if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]:
model_output, predicted_variance = torch.split(
model_output, sample.shape[1], dim=1)
else:
predicted_variance = None
std_fwd_list = self.std_fwd.to(device=sample.device)
std_fwd = std_fwd_list[t]
std_fwd_prev = std_fwd_list[prev_t]
std_delta = (std_fwd**2 - std_fwd_prev**2).sqrt()
pred_original_sample = sample - std_fwd * model_output
# 3. Clip or threshold "predicted x_0"
if self.config.thresholding:
pred_original_sample = self._threshold_sample(pred_original_sample)
elif self.config.clip_sample:
pred_original_sample = pred_original_sample.clamp(
-self.config.clip_sample_range, self.config.clip_sample_range
)
mu_x0, mu_xt, var = compute_gaussian_product_coef(
std_fwd_prev, std_delta)
pred_prev_sample = mu_x0 * pred_original_sample + mu_xt * sample
# 6. Add noise
variance_noise = 0
if t > 0 and not is_ode:
device = model_output.device
variance_noise = randn_tensor(
model_output.shape, generator=generator, device=device, dtype=model_output.dtype
) * var.sqrt()
pred_prev_sample = pred_prev_sample + variance_noise
# from torchvision.utils import save_image
# img_cat = torch.cat((xn, pred_original_sample, pred_prev_sample), 2)
# save_image((img_cat + 1) / 2, f'tmp/tmp_{t.item()}.png')
if not return_dict:
return (pred_prev_sample,)
return DDPMSchedulerOutput(prev_sample=pred_prev_sample, pred_original_sample=pred_original_sample)
def add_noise(
self,
x0: torch.Tensor,
x1: torch.Tensor,
timesteps: torch.IntTensor,
is_ode: bool = False,
noise=None
) -> torch.Tensor:
mu_x0 = self.mu_x0.to(device=x0.device)
mu_x0 = mu_x0[timesteps]
mu_x1 = self.mu_x1.to(device=x0.device)
mu_x1 = mu_x1[timesteps]
std_sb = self.std_sb.to(device=x0.device)
std_sb = std_sb[timesteps]
while len(mu_x0.shape) < len(x0.shape):
mu_x0 = mu_x0.unsqueeze(-1)
mu_x1 = mu_x1.unsqueeze(-1)
std_sb = std_sb.unsqueeze(-1)
xt = mu_x0 * x0 + mu_x1 * x1
if not is_ode:
if noise is None:
noise = torch.randn_like(xt)
xt = xt + std_sb * noise
return xt
def get_velocity(self, sample: torch.Tensor, noise: torch.Tensor, timesteps: torch.IntTensor) -> torch.Tensor:
raise NotImplementedError
# Make sure alphas_cumprod and timestep have same device and dtype as sample
# self.alphas_cumprod = self.alphas_cumprod.to(device=sample.device)
# alphas_cumprod = self.alphas_cumprod.to(dtype=sample.dtype)
# timesteps = timesteps.to(sample.device)
# sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5
# sqrt_alpha_prod = sqrt_alpha_prod.flatten()
# while len(sqrt_alpha_prod.shape) < len(sample.shape):
# sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)
# sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5
# sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
# while len(sqrt_one_minus_alpha_prod.shape) < len(sample.shape):
# sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)
# velocity = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample
# return velocity
def compute_label(self, timesteps, x0, xt):
std_fwd = self.std_fwd.to(device=x0.device)
std_fwd = std_fwd[timesteps]
while len(std_fwd.shape) < len(x0.shape):
std_fwd = std_fwd.unsqueeze(-1)
label = (xt - x0) / std_fwd
return label
def __len__(self):
return self.config.num_train_timesteps
def previous_timestep(self, timestep):
if self.custom_timesteps:
index = (self.timesteps == timestep).nonzero(as_tuple=True)[0][0]
if index == self.timesteps.shape[0] - 1:
prev_t = torch.tensor(-1)
else:
prev_t = self.timesteps[index + 1]
else:
num_inference_steps = (
self.num_inference_steps if self.num_inference_steps else self.config.num_train_timesteps
)
prev_t = timestep - self.config.num_train_timesteps // num_inference_steps
return prev_t