--- license: apache-2.0 base_model: distilbert-base-cased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: test_trainer4 results: [] --- # test_trainer4 This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8004 - Precision: 1.0 - Recall: 1.0 - F1: 1.0 - Accuracy: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:---:|:--------:| | 1.1721 | 0.92 | 6 | 0.9430 | 1.0 | 1.0 | 1.0 | 1.0 | | 0.9711 | 2.0 | 13 | 0.9201 | 1.0 | 1.0 | 1.0 | 1.0 | | 1.1169 | 2.92 | 19 | 0.8874 | 1.0 | 1.0 | 1.0 | 1.0 | | 0.9234 | 4.0 | 26 | 0.8359 | 1.0 | 1.0 | 1.0 | 1.0 | | 0.9595 | 4.62 | 30 | 0.8004 | 1.0 | 1.0 | 1.0 | 1.0 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.1.0+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2