--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 - precision - recall base_model: bert-large-uncased model-index: - name: trainer results: - task: type: text-classification name: Text Classification dataset: name: glue type: glue config: cola split: validation args: cola metrics: - type: accuracy value: 0.8465963566634708 name: Accuracy - type: f1 value: 0.8064540073113251 name: F1 - type: precision value: 0.840606542828289 name: Precision - type: recall value: 0.7876439727431708 name: Recall --- # trainer This model is a fine-tuned version of [bert-large-uncased](https://huggingface.co/bert-large-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.4490 - Accuracy: 0.8466 - F1: 0.8065 - Precision: 0.8406 - Recall: 0.7876 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | No log | 1.0 | 267 | 0.3860 | 0.8370 | 0.7999 | 0.8184 | 0.7876 | | 0.3455 | 2.0 | 534 | 0.4490 | 0.8466 | 0.8065 | 0.8406 | 0.7876 | ### Framework versions - Transformers 4.37.0 - Pytorch 2.1.2 - Datasets 2.1.0 - Tokenizers 0.15.1