File size: 8,704 Bytes
133928a
f3edc31
133928a
f3edc31
133928a
 
 
f3edc31
 
0acaf35
7970e16
f3edc31
50c16f9
f3edc31
 
 
133928a
 
 
eb5a3c6
133928a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0acaf35
 
32552bc
0acaf35
2aad792
0acaf35
 
 
7970e16
 
6d6b31c
 
 
133928a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d99fa4e
133928a
 
 
 
 
 
 
 
 
 
 
 
 
 
e27e5ab
f3edc31
 
 
 
eb5a3c6
f3edc31
 
 
c8c9f56
133928a
 
 
 
 
f3edc31
 
 
133928a
f3edc31
 
 
133928a
 
 
f3edc31
 
 
64cb177
0acaf35
 
32552bc
0acaf35
 
 
 
7970e16
 
6d6b31c
 
 
133928a
f3edc31
4932186
 
9671a15
4932186
 
 
 
 
 
 
 
 
f3edc31
4932186
 
f3edc31
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
133928a
 
 
f3edc31
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
133928a
 
 
f3edc31
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
133928a
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
import logging
from typing import Optional, Tuple, Union

import torch
import torch.nn as nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from torch.nn.modules.utils import consume_prefix_in_state_dict_if_present
from transformers import BertPreTrainedModel
from transformers.modeling_outputs import SequenceClassifierOutput
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file

from .bert_layers_mosa import BertModel

logger = logging.getLogger(__name__)


class MosaicBertForEmbeddingGeneration(BertPreTrainedModel):

    def __init__(self, config, add_pooling_layer=False, **kwargs):
        """
        Initializes the BertEmbeddings class.

        Args:
            config (BertConfig): The configuration for the BERT model.
            add_pooling_layer (bool, optional): Whether to add a pooling layer. Defaults to False.
        """
        super().__init__(config)
        assert (
            config.num_hidden_layers >= config.num_embedding_layers
        ), "num_hidden_layers should be greater than or equal to num_embedding_layers"
        self.config = config
        self.bert = BertModel(config, add_pooling_layer=add_pooling_layer)
        # this resets the weights
        self.post_init()

    @classmethod
    def from_pretrained(
        cls, pretrained_checkpoint, state_dict=None, config=None, *inputs, **kwargs
    ):
        """Load from pre-trained."""
        # this gets a fresh init model
        model = cls(config, *inputs, **kwargs)

        # Download the model file
        archive_file = hf_hub_download(
            repo_id=pretrained_checkpoint,
            filename="model.safetensors",

        )
        
        # Load the state_dict
        state_dict = load_file(archive_file)

        # add missing bert prefix
        state_dict = {f'bert.{key}': value for key, value in state_dict.items()}
        
        missing_keys, unexpected_keys = model.load_state_dict(state_dict, strict=False)

        if len(missing_keys) > 0:
            logger.warning(
                f"Found these missing keys in the checkpoint: {', '.join(missing_keys)}"
            )

            logger.warning(f"the number of which is equal to {len(missing_keys)}")

        if len(unexpected_keys) > 0:
            logger.warning(
                f"Found these unexpected keys in the checkpoint: {', '.join(unexpected_keys)}",
            )
            logger.warning(f"the number of which is equal to {len(unexpected_keys)}")

        return model

    def forward(
        self,
        input_ids: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        token_type_ids: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.Tensor] = None,
        subset_mask: Optional[torch.Tensor] = None,
        output_all_encoded_layers: bool = True,
    ) -> torch.Tensor:

        embedding_output = self.bert.embeddings(input_ids, token_type_ids, position_ids)

        encoder_outputs_all = self.bert.encoder(
            embedding_output,
            attention_mask,
            output_all_encoded_layers=output_all_encoded_layers,
            subset_mask=subset_mask,
        )

        # batch_size, hidden_dim
        return encoder_outputs_all

class ClinicalMosaicForSequenceClassification(BertPreTrainedModel):
    """Bert Model transformer with a sequence classification/regression head.
    This head is just a linear layer on top of the pooled output.
    """

    def __init__(self, config, **kwargs):
        super().__init__(config)
        self.num_labels = config.num_labels
        self.config = config
        self.bert = BertModel(config, add_pooling_layer=True)
        classifier_dropout = (
            config.classifier_dropout
            if config.classifier_dropout is not None
            else config.hidden_dropout_prob
        )
        self.dropout = nn.Dropout(classifier_dropout)
        self.classifier = nn.Linear(config.hidden_size, config.num_labels)

        # this resets the weights
        self.post_init()

    @classmethod
    def from_pretrained(
        cls, pretrained_checkpoint, state_dict=None, config=None, *inputs, **kwargs
    ):
        """Load from pre-trained."""
        # this gets a fresh init model
        model = cls(config, *inputs, **kwargs)
    
        # Download the model file
        archive_file = hf_hub_download(
            repo_id=pretrained_checkpoint,
            filename="model.safetensors",
        )
        
        # Load the state_dict
        state_dict = load_file(archive_file)

        # add missing bert prefix
        state_dict = {f'bert.{key}': value for key, value in state_dict.items()}
        
        missing_keys, unexpected_keys = model.load_state_dict(state_dict, strict=False)

        # Calculate classifier parameters
        num_classifier_params = config.hidden_size * config.num_labels + config.num_labels
        classifier_keys = {"classifier.weight", "classifier.bias", "bert.pooler.dense.weight", "bert.pooler.dense.bias"}
        
        # Check if only the classification layer is missing
        if set(missing_keys) == classifier_keys:
            print(
                f"Checkpoint does not contain the classification layer "
                f"({config.hidden_size}x{config.num_labels} + {config.num_labels} = {num_classifier_params} params). "
                "It will be randomly initialized."
            )
        elif len(missing_keys) > 0:
            logger.warning(
                f"Checkpoint is missing {len(missing_keys)} parameters, including possibly critical ones: "
                f"{', '.join(missing_keys)}"
            )

        if len(unexpected_keys) > 0:
            logger.warning(
                f"Found these unexpected keys in the checkpoint: {', '.join(unexpected_keys)}",
            )
            logger.warning(f"the number of which is equal to {len(unexpected_keys)}")

        return model

    def forward(
        self,
        input_ids: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        token_type_ids: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.Tensor] = None,
        head_mask: Optional[torch.Tensor] = None,
        inputs_embeds: Optional[torch.Tensor] = None,
        labels: Optional[torch.Tensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]:

        return_dict = (
            return_dict if return_dict is not None else self.config.use_return_dict
        )

        outputs = self.bert(
            input_ids,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        pooled_output = outputs[1]

        pooled_output = self.dropout(pooled_output)
        logits = self.classifier(pooled_output)

        loss = None
        if labels is not None:
            if self.config.problem_type is None:
                if self.num_labels == 1:
                    self.config.problem_type = "regression"
                elif self.num_labels > 1 and (
                    labels.dtype == torch.long or labels.dtype == torch.int
                ):
                    self.config.problem_type = "single_label_classification"
                else:
                    self.config.problem_type = "multi_label_classification"

            if self.config.problem_type == "regression":
                loss_fct = MSELoss()
                if self.num_labels == 1:
                    loss = loss_fct(logits.squeeze(), labels.squeeze())
                else:
                    loss = loss_fct(logits, labels)
            elif self.config.problem_type == "single_label_classification":
                loss_fct = CrossEntropyLoss()
                loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
            elif self.config.problem_type == "multi_label_classification":
                loss_fct = BCEWithLogitsLoss()
                loss = loss_fct(logits, labels)
        if not return_dict:
            output = (logits,) + outputs[2:]
            return ((loss,) + output) if loss is not None else output

        return SequenceClassifierOutput(
            loss=loss,
            logits=logits,
            hidden_states=None,
            attentions=None,
        )