--- license: mit tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: xlm-sentiment-new results: [] --- # xlm-sentiment-new This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6166 - Accuracy: 0.7405 - Precision: 0.7375 - Recall: 0.7405 - F1: 0.7386 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 6 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | No log | 1.0 | 296 | 0.5519 | 0.7310 | 0.7266 | 0.7310 | 0.7277 | | 0.5719 | 2.0 | 592 | 0.5569 | 0.75 | 0.7562 | 0.75 | 0.7302 | | 0.5719 | 3.0 | 888 | 0.5320 | 0.7243 | 0.7269 | 0.7243 | 0.7254 | | 0.477 | 4.0 | 1184 | 0.5771 | 0.7300 | 0.7264 | 0.7300 | 0.7276 | | 0.477 | 5.0 | 1480 | 0.6051 | 0.7376 | 0.7361 | 0.7376 | 0.7368 | | 0.428 | 6.0 | 1776 | 0.6166 | 0.7405 | 0.7375 | 0.7405 | 0.7386 | ### Framework versions - Transformers 4.24.0.dev0 - Pytorch 1.11.0+cu102 - Datasets 2.6.1 - Tokenizers 0.13.1