--- license: apache-2.0 base_model: rinna/japanese-hubert-large tags: - generated_from_trainer datasets: - audiofolder metrics: - wer model-index: - name: hubert-japanese-large-noise-0427 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: audiofolder type: audiofolder config: default split: None args: default metrics: - name: Wer type: wer value: 0.998 --- # hubert-japanese-large-noise-0427 This model is a fine-tuned version of [rinna/japanese-hubert-large](https://huggingface.co/rinna/japanese-hubert-large) on the audiofolder dataset. It achieves the following results on the evaluation set: - Loss: 0.3383 - Cer: 0.0896 - Wer: 0.998 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 12500.0 - num_epochs: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | Cer | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:|:-----:| | 9.4222 | 1.0 | 2500 | 8.3462 | 0.9998 | 1.0 | | 3.8795 | 2.0 | 5000 | 3.7791 | 0.7299 | 1.0 | | 3.6295 | 3.0 | 7500 | 3.5969 | 0.7280 | 1.0 | | 1.451 | 4.0 | 10000 | 1.0974 | 0.1931 | 1.0 | | 0.7754 | 5.0 | 12500 | 0.5525 | 0.1595 | 1.0 | | 0.636 | 6.0 | 15000 | 0.4586 | 0.1605 | 1.0 | | 0.5528 | 7.0 | 17500 | 0.4240 | 0.1377 | 1.0 | | 0.5064 | 8.0 | 20000 | 0.3931 | 0.1412 | 1.0 | | 0.4767 | 9.0 | 22500 | 0.3593 | 0.1403 | 1.0 | | 0.449 | 10.0 | 25000 | 0.3519 | 0.1112 | 1.0 | | 0.4261 | 11.0 | 27500 | 0.3578 | 0.1048 | 1.0 | | 0.4131 | 12.0 | 30000 | 0.3459 | 0.1142 | 1.0 | | 0.3807 | 13.0 | 32500 | 0.3355 | 0.1072 | 1.0 | | 0.3759 | 14.0 | 35000 | 0.3380 | 0.0967 | 1.0 | | 0.3532 | 15.0 | 37500 | 0.3310 | 0.1198 | 1.0 | | 0.3469 | 16.0 | 40000 | 0.3383 | 0.0927 | 1.0 | | 0.3297 | 17.0 | 42500 | 0.3363 | 0.0911 | 1.0 | | 0.3347 | 18.0 | 45000 | 0.3333 | 0.0895 | 0.998 | | 0.3225 | 19.0 | 47500 | 0.3393 | 0.0944 | 0.998 | | 0.3199 | 20.0 | 50000 | 0.3341 | 0.0873 | 0.998 | | 0.3141 | 21.0 | 52500 | 0.3363 | 0.0863 | 0.998 | | 0.2927 | 22.0 | 55000 | 0.3384 | 0.0889 | 0.998 | | 0.3051 | 23.0 | 57500 | 0.3389 | 0.0902 | 0.998 | | 0.3072 | 24.0 | 60000 | 0.3387 | 0.0895 | 0.998 | | 0.3109 | 25.0 | 62500 | 0.3383 | 0.0896 | 0.998 | ### Framework versions - Transformers 4.39.3 - Pytorch 2.2.2 - Datasets 2.18.0 - Tokenizers 0.15.1