File size: 2,141 Bytes
9ed3b66
4e8d679
 
 
9ed3b66
 
4e8d679
 
9ed3b66
4e8d679
9ed3b66
 
4e8d679
9ed3b66
 
4e8d679
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9ed3b66
 
4e8d679
 
9ed3b66
 
4e8d679
 
 
 
9ed3b66
 
4e8d679
 
 
9ed3b66
 
4e8d679
 
9ed3b66
4e8d679
9ed3b66
4e8d679
 
 
9ed3b66
4e8d679
 
9ed3b66
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
from transformers import ResNetConfig, FlaxResNetForImageClassification, ResNetForImageClassification, FlaxResNetModel, ResNetModel
from flax.traverse_util import flatten_dict, unflatten_dict
from flax.core.frozen_dict import unfreeze
import re
import jax.numpy as jnp
import torch


pt_resnet = ResNetForImageClassification.from_pretrained("microsoft/resnet-50")
flax_resnet = FlaxResNetForImageClassification(pt_resnet.config)

pt_state = pt_resnet.state_dict()
flax_state = flatten_dict(unfreeze(flax_resnet.params))


new_pt_state = {}
for key, tensor in pt_state.items():
    key_parts = set(key.split("."))
    tensor = tensor.numpy()

    if "convolution.weight" in key:
        key = key.replace("weight", "kernel")
        tensor = tensor.transpose((2, 3, 1, 0))
        key = "params."+key
        new_pt_state[key] = tensor

    elif "normalization.weight" in key:
        key = key.replace("weight", "scale")
        key = "params."+key
        new_pt_state[key] = tensor
    
    elif "normalization.bias" in key:
        key = key.replace("bias", "bias")
        key = "params."+key
        new_pt_state[key] = tensor
    
    elif "classifier.1.weight" in key:
        key = "params.classifier.1.kernel"
        new_pt_state[key] = tensor.transpose()

    elif "classifier.1.bias" in key:
        key = "params.classifier.1.bias"
        new_pt_state[key] = tensor

    elif "normalization.running_mean" in key:
        key = key.replace("running_mean", "mean")
        key = "batch_stats."+key
        new_pt_state[key] = tensor

    elif "normalization.running_var" in key:
        key = key.replace("running_var", "var")
        key = "batch_stats."+key
        new_pt_state[key] = tensor
    
    else:
        continue

    
for total_updated, (new_key, new_tensor) in enumerate(new_pt_state.items()):
    orig_flax_tensor = flax_state.get(tuple(new_key.split(".")))
    assert orig_flax_tensor is not None
    assert orig_flax_tensor.shape == new_tensor.shape
    flax_state[tuple(new_key.split("."))] = new_tensor
flax_state = unflatten_dict(flax_state)
flax_resnet.save_pretrained("resnet_50_flax", params=flax_state)