--- language: [] library_name: sentence-transformers tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:46453 - loss:MultipleNegativesRankingLoss base_model: sentence-transformers/all-mpnet-base-v2 datasets: [] widget: - source_sentence: clinician thinks the patient is homeless sentences: - '- Ms. ___ was homeless at the time of this admission.' - This is ___ year old single homeless woman, previously diagnosed with borderline personality disorder with chronic affective instability, reactive mood, impulsivity, SIB (ingesting objects while hospitalized), recently discharged from ___ on ___, ___ client, who presented to ___ on a ___ with worsening mood, threats of suicide via cutting her legs off, as well as thoughts of wanting to hurt _ - Patient reports that her apartment is bugged, she has camera in her television, and a helicopter is reading minds. - source_sentence: assigned a case manager for housing sentences: - 'Home With Service Facility:' - We consulted social work, psychiatry, and the case managers, who are working with the hospital attorneys to acquire safer housing options with greater oversight from health care professionals. . - Has not established care with - source_sentence: has been homeless sentences: - He reports being homeless, living in an empty garage near his sister. - To complicate matters, patient's main support/roommate will be moving out of country soon, so he will no longer be able to live in his apartment. - 'Axis IV: homelessness' - source_sentence: homelessness sentences: - Does not identify any acute stressors, but describes no longer being able to tolerate being homeless (lack of food/clothing/showers). - Unclear how reliable his group home is administering meds, notably nursing is quite limited. - Case management assisted in formulated a plan with ___ that would allow the patient's ___ be the first responder when issues regarding her these two problems arise. - source_sentence: assisted…housing benefits sentences: - As a result, patient is currently homeless. - 'Home With Service Facility:' - Patient with multiple admissions in the past several months, homeless. pipeline_tag: sentence-similarity --- # SentenceTransformer based on sentence-transformers/all-mpnet-base-v2 This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) - **Maximum Sequence Length:** 384 tokens - **Output Dimensionality:** 768 tokens - **Similarity Function:** Cosine Similarity ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the đŸ¤— Hub model = SentenceTransformer("Shobhank-iiitdwd/Clinical_sentence_transformers_mpnet_base_v2") # Run inference sentences = [ 'assisted…housing benefits', 'Home With Service Facility:', 'Patient with multiple admissions in the past several months, homeless.', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 768] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` ## Training Details ### Training Dataset #### Unnamed Dataset ### Training Hyperparameters #### Non-Default Hyperparameters - `per_device_train_batch_size`: 64 - `per_device_eval_batch_size`: 64 - `num_train_epochs`: 100 - `multi_dataset_batch_sampler`: round_robin #### All Hyperparameters
Click to expand - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: no - `prediction_loss_only`: True - `per_device_train_batch_size`: 64 - `per_device_eval_batch_size`: 64 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `learning_rate`: 5e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1 - `num_train_epochs`: 100 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.0 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: False - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: False - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `batch_sampler`: batch_sampler - `multi_dataset_batch_sampler`: round_robin
### Training Logs
Click to expand | Epoch | Step | Training Loss | |:-------:|:-----:|:-------------:| | 0.6887 | 500 | 3.5133 | | 1.3774 | 1000 | 3.2727 | | 2.0661 | 1500 | 3.2238 | | 2.7548 | 2000 | 3.1758 | | 3.4435 | 2500 | 3.1582 | | 4.1322 | 3000 | 3.1385 | | 4.8209 | 3500 | 3.1155 | | 5.5096 | 4000 | 3.1034 | | 6.1983 | 4500 | 3.091 | | 6.8871 | 5000 | 3.0768 | | 7.5758 | 5500 | 3.065 | | 8.2645 | 6000 | 3.0632 | | 8.9532 | 6500 | 3.0566 | | 9.6419 | 7000 | 3.0433 | | 0.6887 | 500 | 3.0536 | | 1.3774 | 1000 | 3.0608 | | 2.0661 | 1500 | 3.0631 | | 2.7548 | 2000 | 3.0644 | | 3.4435 | 2500 | 3.0667 | | 4.1322 | 3000 | 3.07 | | 4.8209 | 3500 | 3.0682 | | 5.5096 | 4000 | 3.0718 | | 6.1983 | 4500 | 3.0719 | | 6.8871 | 5000 | 3.0685 | | 7.5758 | 5500 | 3.0723 | | 8.2645 | 6000 | 3.0681 | | 8.9532 | 6500 | 3.0633 | | 9.6419 | 7000 | 3.0642 | | 10.3306 | 7500 | 3.0511 | | 11.0193 | 8000 | 3.0463 | | 11.7080 | 8500 | 3.0301 | | 12.3967 | 9000 | 3.0163 | | 13.0854 | 9500 | 3.0059 | | 13.7741 | 10000 | 2.9845 | | 14.4628 | 10500 | 2.9705 | | 15.1515 | 11000 | 2.9536 | | 15.8402 | 11500 | 2.9263 | | 16.5289 | 12000 | 2.9199 | | 17.2176 | 12500 | 2.8989 | | 17.9063 | 13000 | 2.8818 | | 18.5950 | 13500 | 2.8735 | | 19.2837 | 14000 | 2.852 | | 19.9725 | 14500 | 2.8315 | | 20.6612 | 15000 | 2.8095 | | 21.3499 | 15500 | 2.7965 | | 22.0386 | 16000 | 2.7802 | | 22.7273 | 16500 | 2.7527 | | 23.4160 | 17000 | 2.7547 | | 24.1047 | 17500 | 2.7377 | | 24.7934 | 18000 | 2.7035 | | 25.4821 | 18500 | 2.7102 | | 26.1708 | 19000 | 2.6997 | | 26.8595 | 19500 | 2.6548 | | 27.5482 | 20000 | 2.6704 | | 28.2369 | 20500 | 2.6624 | | 28.9256 | 21000 | 2.6306 | | 29.6143 | 21500 | 2.6358 | | 30.3030 | 22000 | 2.634 | | 30.9917 | 22500 | 2.6089 | | 31.6804 | 23000 | 2.607 | | 32.3691 | 23500 | 2.6246 | | 33.0579 | 24000 | 2.5947 | | 33.7466 | 24500 | 2.5798 | | 34.4353 | 25000 | 2.6025 | | 35.1240 | 25500 | 2.5824 | | 35.8127 | 26000 | 2.5698 | | 36.5014 | 26500 | 2.5711 | | 37.1901 | 27000 | 2.5636 | | 37.8788 | 27500 | 2.5387 | | 38.5675 | 28000 | 2.5472 | | 39.2562 | 28500 | 2.5455 | | 39.9449 | 29000 | 2.5204 | | 40.6336 | 29500 | 2.524 | | 41.3223 | 30000 | 2.5246 | | 42.0110 | 30500 | 2.5125 | | 42.6997 | 31000 | 2.5042 | | 43.3884 | 31500 | 2.5165 | | 44.0771 | 32000 | 2.5187 | | 44.7658 | 32500 | 2.4975 | | 45.4545 | 33000 | 2.5048 | | 46.1433 | 33500 | 2.521 | | 46.8320 | 34000 | 2.4825 | | 47.5207 | 34500 | 2.5034 | | 48.2094 | 35000 | 2.5049 | | 48.8981 | 35500 | 2.4886 | | 49.5868 | 36000 | 2.4992 | | 50.2755 | 36500 | 2.5099 | | 50.9642 | 37000 | 2.489 | | 51.6529 | 37500 | 2.4825 | | 52.3416 | 38000 | 2.4902 | | 53.0303 | 38500 | 2.4815 | | 53.7190 | 39000 | 2.4723 | | 54.4077 | 39500 | 2.4921 | | 55.0964 | 40000 | 2.4763 | | 55.7851 | 40500 | 2.4692 | | 56.4738 | 41000 | 2.4831 | | 57.1625 | 41500 | 2.4705 | | 57.8512 | 42000 | 2.4659 | | 58.5399 | 42500 | 2.4804 | | 59.2287 | 43000 | 2.4582 | | 59.9174 | 43500 | 2.4544 | | 60.6061 | 44000 | 2.4712 | | 61.2948 | 44500 | 2.4478 | | 61.9835 | 45000 | 2.4428 | | 62.6722 | 45500 | 2.4558 | | 63.3609 | 46000 | 2.4428 | | 64.0496 | 46500 | 2.4399 | | 64.7383 | 47000 | 2.4529 | | 65.4270 | 47500 | 2.4374 | | 66.1157 | 48000 | 2.4543 | | 66.8044 | 48500 | 2.4576 | | 67.4931 | 49000 | 2.4426 | | 68.1818 | 49500 | 2.4698 | | 68.8705 | 50000 | 2.4604 | | 69.5592 | 50500 | 2.4515 | | 70.2479 | 51000 | 2.4804 | | 70.9366 | 51500 | 2.4545 | | 71.6253 | 52000 | 2.4523 | | 72.3140 | 52500 | 2.4756 | | 73.0028 | 53000 | 2.4697 | | 73.6915 | 53500 | 2.4536 | | 74.3802 | 54000 | 2.4866 | | 75.0689 | 54500 | 2.471 | | 75.7576 | 55000 | 2.483 | | 76.4463 | 55500 | 2.5002 | | 77.1350 | 56000 | 2.4849 | | 77.8237 | 56500 | 2.4848 | | 78.5124 | 57000 | 2.5047 | | 79.2011 | 57500 | 2.5143 | | 79.8898 | 58000 | 2.4879 | | 80.5785 | 58500 | 2.5093 | | 81.2672 | 59000 | 2.5247 | | 81.9559 | 59500 | 2.4915 | | 82.6446 | 60000 | 2.5124 | | 83.3333 | 60500 | 2.5056 | | 84.0220 | 61000 | 2.4767 | | 84.7107 | 61500 | 2.5068 | | 85.3994 | 62000 | 2.5173 | | 86.0882 | 62500 | 2.4911 | | 86.7769 | 63000 | 2.526 | | 87.4656 | 63500 | 2.5313 | | 88.1543 | 64000 | 2.5312 | | 88.8430 | 64500 | 2.5735 | | 89.5317 | 65000 | 2.5873 | | 90.2204 | 65500 | 2.6395 | | 90.9091 | 66000 | 2.7914 | | 91.5978 | 66500 | 2.6729 | | 92.2865 | 67000 | 2.9846 | | 92.9752 | 67500 | 2.9259 | | 93.6639 | 68000 | 2.8845 | | 94.3526 | 68500 | 2.9906 | | 95.0413 | 69000 | 2.9534 | | 95.7300 | 69500 | 2.9857 | | 96.4187 | 70000 | 3.0559 | | 97.1074 | 70500 | 2.9919 | | 97.7961 | 71000 | 3.0435 | | 98.4848 | 71500 | 3.0534 | | 99.1736 | 72000 | 3.0169 | | 99.8623 | 72500 | 3.0264 |
### Framework Versions - Python: 3.10.11 - Sentence Transformers: 3.0.1 - Transformers: 4.41.2 - PyTorch: 2.0.1 - Accelerate: 0.31.0 - Datasets: 2.19.1 - Tokenizers: 0.19.1