--- license: apache-2.0 tags: - generated_from_trainer datasets: - snacks metrics: - accuracy model-index: - name: vit-snacks results: - task: name: Image Classification type: image-classification dataset: name: snacks type: snacks args: default metrics: - name: Accuracy type: accuracy value: 0.9392670157068063 --- # vit-snacks This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the snacks dataset. It achieves the following results on the evaluation set: - Loss: 0.2782 - Accuracy: 0.9393 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.8724 | 0.33 | 100 | 0.9118 | 0.8670 | | 0.5628 | 0.66 | 200 | 0.6873 | 0.8471 | | 0.4421 | 0.99 | 300 | 0.4995 | 0.8691 | | 0.2837 | 1.32 | 400 | 0.4008 | 0.9026 | | 0.1645 | 1.65 | 500 | 0.3702 | 0.9058 | | 0.1604 | 1.98 | 600 | 0.3981 | 0.8921 | | 0.0498 | 2.31 | 700 | 0.3185 | 0.9204 | | 0.0406 | 2.64 | 800 | 0.3427 | 0.9141 | | 0.1049 | 2.97 | 900 | 0.3444 | 0.9173 | | 0.0272 | 3.3 | 1000 | 0.3168 | 0.9246 | | 0.0186 | 3.63 | 1100 | 0.3142 | 0.9288 | | 0.0203 | 3.96 | 1200 | 0.2931 | 0.9298 | | 0.007 | 4.29 | 1300 | 0.2754 | 0.9393 | | 0.0072 | 4.62 | 1400 | 0.2778 | 0.9403 | | 0.0073 | 4.95 | 1500 | 0.2782 | 0.9393 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1