--- datasets: - nkp37/OpenVid-1M base_model: - ali-vilab/i2vgen-xl - THUDM/CogVideoX-5b tags: - video-to-video - video-super-resolution --- # STAR: Spatial-Temporal Augmentation with Text-to-Video Models for Real-World Video Super-Resolution ### Code: https://github.com/NJU-PCALab/STAR ### Paper: https://arxiv.org/abs/2501.02976 ### Project Page: https://nju-pcalab.github.io/projects/STAR ### Demo Video: https://youtu.be/hx0zrql-SrU ## ⚙️ Dependencies and Installation ``` ## git clone this repository git clone https://github.com/NJU-PCALab/STAR.git cd STAR ## create an environment conda create -n star python=3.10 conda activate star pip install -r requirements.txt sudo apt-get update && apt-get install ffmpeg libsm6 libxext6 -y ``` ## 🚀 Inference ### Model Weight | Base Model | Type | URL | |------------|--------|-----------------------------------------------------------------------------------------------| | I2VGen-XL | Light Degradation | [:link:](https://huggingface.co/SherryX/STAR/resolve/main/I2VGen-XL-based/light_deg.pt?download=true) | | I2VGen-XL | Heavy Degradation | [:link:](https://huggingface.co/SherryX/STAR/resolve/main/I2VGen-XL-based/heavy_deg.pt?download=true) | | CogVideoX-5B | Heavy Degradation | [:link:](https://huggingface.co/SherryX/STAR/tree/main/CogVideoX-5B-based) | ### 1. I2VGen-XL-based #### Step 1: Download the pretrained model STAR from [HuggingFace](https://huggingface.co/SherryX/STAR). We provide two verisions for I2VGen-XL-based model, `heavy_deg.pt` for heavy degraded videos and `light_deg.pt` for light degraded videos (e.g., the low-resolution video downloaded from video websites). You can put the weight into `pretrained_weight/`. #### Step 2: Prepare testing data You can put the testing videos in the `input/video/`. As for the prompt, there are three options: 1. No prompt. 2. Automatically generate a prompt [using Pllava](https://github.com/hpcaitech/Open-Sora/tree/main/tools/caption#pllava-captioning). 3. Manually write the prompt. You can put the txt file in the `input/text/`. #### Step 3: Change the path You need to change the paths in `video_super_resolution/scripts/inference_sr.sh` to your local corresponding paths, including `video_folder_path`, `txt_file_path`, `model_path`, and `save_dir`. #### Step 4: Running inference command ``` bash video_super_resolution/scripts/inference_sr.sh ``` If you encounter an OOM problem, you can set a smaller `frame_length` in `inference_sr.sh`. ### 2. CogVideoX-based Refer to these [instructions](https://github.com/NJU-PCALab/STAR/tree/main/cogvideox-based#cogvideox-based-model-inference) for inference with the CogVideX-5B-based model. Please note that the CogVideX-5B-based model supports only 720x480 input.