--- license: apache-2.0 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 - precision model-index: - name: distilbert-base-uncased_emotion_ft_0526 results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: split split: validation args: split metrics: - name: Accuracy type: accuracy value: 0.9375 - name: F1 type: f1 value: 0.937552703246777 - name: Precision type: precision value: 0.9169515578018389 --- # distilbert-base-uncased_emotion_ft_0526 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2275 - Accuracy: 0.9375 - F1: 0.9376 - Precision: 0.9170 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:| | 0.2131 | 1.0 | 2000 | 0.2301 | 0.93 | 0.9305 | 0.9008 | | 0.1881 | 2.0 | 4000 | 0.1854 | 0.9385 | 0.9388 | 0.9080 | | 0.1012 | 3.0 | 6000 | 0.2200 | 0.935 | 0.9353 | 0.9066 | | 0.0642 | 4.0 | 8000 | 0.2275 | 0.9375 | 0.9376 | 0.9170 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.1+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3