--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: distilbert-training-2 results: [] --- # distilbert-training-2 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0164 - Accuracy: 0.9976 - Precision: 0.9982 - Recall: 0.9929 - F1: 0.9956 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | No log | 0.5 | 302 | 0.0849 | 0.9836 | 1.0 | 0.9398 | 0.9690 | | No log | 1.0 | 604 | 0.0525 | 0.9894 | 0.9755 | 0.9858 | 0.9806 | | 0.0957 | 1.5 | 906 | 0.0184 | 0.9971 | 0.9982 | 0.9912 | 0.9947 | | 0.0957 | 2.0 | 1208 | 0.0438 | 0.9923 | 0.9982 | 0.9735 | 0.9857 | | 0.0265 | 2.5 | 1510 | 0.0246 | 0.9966 | 0.9982 | 0.9894 | 0.9938 | | 0.0265 | 3.0 | 1812 | 0.0170 | 0.9971 | 0.9982 | 0.9912 | 0.9947 | | 0.0116 | 3.49 | 2114 | 0.0184 | 0.9971 | 1.0 | 0.9894 | 0.9947 | | 0.0116 | 3.99 | 2416 | 0.0259 | 0.9961 | 1.0 | 0.9858 | 0.9929 | | 0.0064 | 4.49 | 2718 | 0.0156 | 0.9976 | 0.9982 | 0.9929 | 0.9956 | | 0.0064 | 4.99 | 3020 | 0.0164 | 0.9976 | 0.9982 | 0.9929 | 0.9956 | ### Framework versions - Transformers 4.33.1 - Pytorch 2.2.0.dev20230913+cu121 - Tokenizers 0.13.3