--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: distilbert-training-1 results: [] --- # distilbert-training-1 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0337 - Accuracy: 0.9940 - Precision: 1.0 - Recall: 0.9875 - F1: 0.9937 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | No log | 0.25 | 85 | 0.0878 | 0.9819 | 0.9787 | 0.9840 | 0.9813 | | No log | 0.5 | 170 | 0.0763 | 0.9819 | 1.0 | 0.9626 | 0.9809 | | No log | 0.75 | 255 | 0.0487 | 0.9880 | 0.9841 | 0.9911 | 0.9876 | | 0.088 | 1.0 | 340 | 0.0411 | 0.9931 | 1.0 | 0.9857 | 0.9928 | | 0.088 | 1.25 | 425 | 0.0417 | 0.9914 | 0.9964 | 0.9857 | 0.9910 | | 0.088 | 1.5 | 510 | 0.0423 | 0.9923 | 0.9946 | 0.9893 | 0.9920 | | 0.088 | 1.76 | 595 | 0.0404 | 0.9931 | 1.0 | 0.9857 | 0.9928 | | 0.0325 | 2.01 | 680 | 0.0459 | 0.9931 | 1.0 | 0.9857 | 0.9928 | | 0.0325 | 2.26 | 765 | 0.0336 | 0.9940 | 1.0 | 0.9875 | 0.9937 | | 0.0325 | 2.51 | 850 | 0.0358 | 0.9931 | 1.0 | 0.9857 | 0.9928 | | 0.0325 | 2.76 | 935 | 0.0413 | 0.9931 | 1.0 | 0.9857 | 0.9928 | | 0.0236 | 3.01 | 1020 | 0.0423 | 0.9931 | 1.0 | 0.9857 | 0.9928 | | 0.0236 | 3.26 | 1105 | 0.0399 | 0.9940 | 1.0 | 0.9875 | 0.9937 | | 0.0236 | 3.51 | 1190 | 0.0380 | 0.9940 | 1.0 | 0.9875 | 0.9937 | | 0.0236 | 3.76 | 1275 | 0.0357 | 0.9940 | 1.0 | 0.9875 | 0.9937 | | 0.0222 | 4.01 | 1360 | 0.0364 | 0.9940 | 1.0 | 0.9875 | 0.9937 | | 0.0222 | 4.26 | 1445 | 0.0351 | 0.9940 | 1.0 | 0.9875 | 0.9937 | | 0.0222 | 4.51 | 1530 | 0.0329 | 0.9940 | 1.0 | 0.9875 | 0.9937 | | 0.0222 | 4.76 | 1615 | 0.0337 | 0.9940 | 1.0 | 0.9875 | 0.9937 | ### Framework versions - Transformers 4.33.1 - Pytorch 2.2.0.dev20230913+cu121 - Tokenizers 0.13.3