End of training
Browse files
README.md
CHANGED
|
@@ -20,7 +20,7 @@ should probably proofread and complete it, then remove this comment. -->
|
|
| 20 |
|
| 21 |
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
|
| 22 |
It achieves the following results on the evaluation set:
|
| 23 |
-
- Loss: 0.
|
| 24 |
- Accuracy: 0.9737
|
| 25 |
- Precision: 0.9762
|
| 26 |
- Recall: 0.9737
|
|
@@ -55,54 +55,54 @@ The following hyperparameters were used during training:
|
|
| 55 |
|
| 56 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|
| 57 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
|
| 58 |
-
| 1.
|
| 59 |
-
| 0.
|
| 60 |
-
| 0.
|
| 61 |
-
| 0.
|
| 62 |
-
| 0.
|
| 63 |
-
| 0.
|
| 64 |
-
| 0.005 | 4.38 | 210 | 0.
|
| 65 |
-
| 0.
|
| 66 |
-
| 0.
|
| 67 |
-
| 0.
|
| 68 |
-
| 0.
|
| 69 |
-
| 0.0019 | 7.5 | 360 | 0.
|
| 70 |
-
| 0.0016 | 8.12 | 390 | 0.
|
| 71 |
-
| 0.
|
| 72 |
-
| 0.0013 | 9.38 | 450 | 0.
|
| 73 |
-
| 0.0012 | 10.0 | 480 | 0.
|
| 74 |
-
| 0.0011 | 10.62 | 510 | 0.
|
| 75 |
-
| 0.
|
| 76 |
-
| 0.
|
| 77 |
-
| 0.0008 | 12.5 | 600 | 0.
|
| 78 |
-
| 0.0008 | 13.12 | 630 | 0.
|
| 79 |
-
| 0.0008 | 13.75 | 660 | 0.
|
| 80 |
-
| 0.0007 | 14.38 | 690 | 0.
|
| 81 |
-
| 0.0007 | 15.0 | 720 | 0.
|
| 82 |
-
| 0.0006 | 15.62 | 750 | 0.
|
| 83 |
-
| 0.0006 | 16.25 | 780 | 0.
|
| 84 |
-
| 0.
|
| 85 |
-
| 0.0005 | 17.5 | 840 | 0.
|
| 86 |
-
| 0.0005 | 18.12 | 870 | 0.
|
| 87 |
-
| 0.0005 | 18.75 | 900 | 0.
|
| 88 |
-
| 0.0005 | 19.38 | 930 | 0.
|
| 89 |
-
| 0.0005 | 20.0 | 960 | 0.
|
| 90 |
-
| 0.
|
| 91 |
-
| 0.0004 | 21.25 | 1020 | 0.
|
| 92 |
-
| 0.0004 | 21.88 | 1050 | 0.
|
| 93 |
-
| 0.0004 | 22.5 | 1080 | 0.
|
| 94 |
-
| 0.0004 | 23.12 | 1110 | 0.
|
| 95 |
-
| 0.0004 | 23.75 | 1140 | 0.
|
| 96 |
-
| 0.0004 | 24.38 | 1170 | 0.
|
| 97 |
-
| 0.0004 | 25.0 | 1200 | 0.
|
| 98 |
-
| 0.0004 | 25.62 | 1230 | 0.
|
| 99 |
-
| 0.
|
| 100 |
-
| 0.
|
| 101 |
-
| 0.0003 | 27.5 | 1320 | 0.
|
| 102 |
-
| 0.0003 | 28.12 | 1350 | 0.
|
| 103 |
-
| 0.
|
| 104 |
-
| 0.0003 | 29.38 | 1410 | 0.
|
| 105 |
-
| 0.
|
| 106 |
|
| 107 |
|
| 108 |
### Framework versions
|
|
|
|
| 20 |
|
| 21 |
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
|
| 22 |
It achieves the following results on the evaluation set:
|
| 23 |
+
- Loss: 0.2184
|
| 24 |
- Accuracy: 0.9737
|
| 25 |
- Precision: 0.9762
|
| 26 |
- Recall: 0.9737
|
|
|
|
| 55 |
|
| 56 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|
| 57 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
|
| 58 |
+
| 1.0414 | 0.62 | 30 | 0.5042 | 0.9211 | 0.9327 | 0.9211 | 0.9204 |
|
| 59 |
+
| 0.3868 | 1.25 | 60 | 0.1559 | 0.9737 | 0.9762 | 0.9737 | 0.9736 |
|
| 60 |
+
| 0.1218 | 1.88 | 90 | 0.1743 | 0.9737 | 0.9762 | 0.9737 | 0.9736 |
|
| 61 |
+
| 0.0363 | 2.5 | 120 | 0.1189 | 0.9474 | 0.9524 | 0.9474 | 0.9472 |
|
| 62 |
+
| 0.0127 | 3.12 | 150 | 0.1455 | 0.9737 | 0.9762 | 0.9737 | 0.9736 |
|
| 63 |
+
| 0.0077 | 3.75 | 180 | 0.1457 | 0.9737 | 0.9762 | 0.9737 | 0.9736 |
|
| 64 |
+
| 0.005 | 4.38 | 210 | 0.1587 | 0.9737 | 0.9762 | 0.9737 | 0.9736 |
|
| 65 |
+
| 0.0039 | 5.0 | 240 | 0.1620 | 0.9737 | 0.9762 | 0.9737 | 0.9736 |
|
| 66 |
+
| 0.0031 | 5.62 | 270 | 0.1667 | 0.9737 | 0.9762 | 0.9737 | 0.9736 |
|
| 67 |
+
| 0.0026 | 6.25 | 300 | 0.1696 | 0.9737 | 0.9762 | 0.9737 | 0.9736 |
|
| 68 |
+
| 0.0022 | 6.88 | 330 | 0.1768 | 0.9737 | 0.9762 | 0.9737 | 0.9736 |
|
| 69 |
+
| 0.0019 | 7.5 | 360 | 0.1802 | 0.9737 | 0.9762 | 0.9737 | 0.9736 |
|
| 70 |
+
| 0.0016 | 8.12 | 390 | 0.1811 | 0.9737 | 0.9762 | 0.9737 | 0.9736 |
|
| 71 |
+
| 0.0015 | 8.75 | 420 | 0.1834 | 0.9737 | 0.9762 | 0.9737 | 0.9736 |
|
| 72 |
+
| 0.0013 | 9.38 | 450 | 0.1872 | 0.9737 | 0.9762 | 0.9737 | 0.9736 |
|
| 73 |
+
| 0.0012 | 10.0 | 480 | 0.1890 | 0.9737 | 0.9762 | 0.9737 | 0.9736 |
|
| 74 |
+
| 0.0011 | 10.62 | 510 | 0.1924 | 0.9737 | 0.9762 | 0.9737 | 0.9736 |
|
| 75 |
+
| 0.001 | 11.25 | 540 | 0.1940 | 0.9737 | 0.9762 | 0.9737 | 0.9736 |
|
| 76 |
+
| 0.0009 | 11.88 | 570 | 0.1967 | 0.9737 | 0.9762 | 0.9737 | 0.9736 |
|
| 77 |
+
| 0.0008 | 12.5 | 600 | 0.1982 | 0.9737 | 0.9762 | 0.9737 | 0.9736 |
|
| 78 |
+
| 0.0008 | 13.12 | 630 | 0.1995 | 0.9737 | 0.9762 | 0.9737 | 0.9736 |
|
| 79 |
+
| 0.0008 | 13.75 | 660 | 0.2009 | 0.9737 | 0.9762 | 0.9737 | 0.9736 |
|
| 80 |
+
| 0.0007 | 14.38 | 690 | 0.2023 | 0.9737 | 0.9762 | 0.9737 | 0.9736 |
|
| 81 |
+
| 0.0007 | 15.0 | 720 | 0.2039 | 0.9737 | 0.9762 | 0.9737 | 0.9736 |
|
| 82 |
+
| 0.0006 | 15.62 | 750 | 0.2049 | 0.9737 | 0.9762 | 0.9737 | 0.9736 |
|
| 83 |
+
| 0.0006 | 16.25 | 780 | 0.2064 | 0.9737 | 0.9762 | 0.9737 | 0.9736 |
|
| 84 |
+
| 0.0006 | 16.88 | 810 | 0.2075 | 0.9737 | 0.9762 | 0.9737 | 0.9736 |
|
| 85 |
+
| 0.0005 | 17.5 | 840 | 0.2087 | 0.9737 | 0.9762 | 0.9737 | 0.9736 |
|
| 86 |
+
| 0.0005 | 18.12 | 870 | 0.2101 | 0.9737 | 0.9762 | 0.9737 | 0.9736 |
|
| 87 |
+
| 0.0005 | 18.75 | 900 | 0.2110 | 0.9737 | 0.9762 | 0.9737 | 0.9736 |
|
| 88 |
+
| 0.0005 | 19.38 | 930 | 0.2116 | 0.9737 | 0.9762 | 0.9737 | 0.9736 |
|
| 89 |
+
| 0.0005 | 20.0 | 960 | 0.2122 | 0.9737 | 0.9762 | 0.9737 | 0.9736 |
|
| 90 |
+
| 0.0004 | 20.62 | 990 | 0.2130 | 0.9737 | 0.9762 | 0.9737 | 0.9736 |
|
| 91 |
+
| 0.0004 | 21.25 | 1020 | 0.2138 | 0.9737 | 0.9762 | 0.9737 | 0.9736 |
|
| 92 |
+
| 0.0004 | 21.88 | 1050 | 0.2143 | 0.9737 | 0.9762 | 0.9737 | 0.9736 |
|
| 93 |
+
| 0.0004 | 22.5 | 1080 | 0.2146 | 0.9737 | 0.9762 | 0.9737 | 0.9736 |
|
| 94 |
+
| 0.0004 | 23.12 | 1110 | 0.2152 | 0.9737 | 0.9762 | 0.9737 | 0.9736 |
|
| 95 |
+
| 0.0004 | 23.75 | 1140 | 0.2158 | 0.9737 | 0.9762 | 0.9737 | 0.9736 |
|
| 96 |
+
| 0.0004 | 24.38 | 1170 | 0.2162 | 0.9737 | 0.9762 | 0.9737 | 0.9736 |
|
| 97 |
+
| 0.0004 | 25.0 | 1200 | 0.2167 | 0.9737 | 0.9762 | 0.9737 | 0.9736 |
|
| 98 |
+
| 0.0004 | 25.62 | 1230 | 0.2170 | 0.9737 | 0.9762 | 0.9737 | 0.9736 |
|
| 99 |
+
| 0.0004 | 26.25 | 1260 | 0.2174 | 0.9737 | 0.9762 | 0.9737 | 0.9736 |
|
| 100 |
+
| 0.0003 | 26.88 | 1290 | 0.2177 | 0.9737 | 0.9762 | 0.9737 | 0.9736 |
|
| 101 |
+
| 0.0003 | 27.5 | 1320 | 0.2179 | 0.9737 | 0.9762 | 0.9737 | 0.9736 |
|
| 102 |
+
| 0.0003 | 28.12 | 1350 | 0.2181 | 0.9737 | 0.9762 | 0.9737 | 0.9736 |
|
| 103 |
+
| 0.0003 | 28.75 | 1380 | 0.2183 | 0.9737 | 0.9762 | 0.9737 | 0.9736 |
|
| 104 |
+
| 0.0003 | 29.38 | 1410 | 0.2183 | 0.9737 | 0.9762 | 0.9737 | 0.9736 |
|
| 105 |
+
| 0.0004 | 30.0 | 1440 | 0.2184 | 0.9737 | 0.9762 | 0.9737 | 0.9736 |
|
| 106 |
|
| 107 |
|
| 108 |
### Framework versions
|
model.safetensors
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
size 267838720
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d8b7b048e6173bffa0feccfe2ca99bd9e8085335bd4fd6bced3f3594aec77210
|
| 3 |
size 267838720
|
runs/Jan16_10-21-50_745092e66db7/events.out.tfevents.1705400515.745092e66db7.965.0
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:30c2b22c0d75ada4571a1bff6d5b56befd7f7f61124f72d548180e5a2fcb4110
|
| 3 |
+
size 34976
|
training_args.bin
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
size 4728
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:8e206c762958ccd14dd8e02e0b778f3afab4476f3dd156847c274978d4a937d3
|
| 3 |
size 4728
|