---
pipeline_tag: image-text-to-text
inference: false
license: apache-2.0
---
# LLaVA-Hound Model Card
## Model details
**Model type:**
LLaVA-Hound is an open-source video large multimodal model, fine-tuned from video instruction following data based on large language model.
This model is the **SFT** version on **image and video instruction dataset** trained from **ShareGPTVideo/LLaVA-Hound-Pretrain**.
Base LLM: [lmsys/vicuna-7b-v1.5](https://huggingface.co/lmsys/vicuna-7b-v1.5)
**Model date:**
Trained on March 15, 2024.
**Paper or resources for more information:**
Paper: https://huggingface.co/papers/2404.01258
Code: https://github.com/RifleZhang/LLaVA-Hound-DPO
## License
[lmsys/vicuna-7b-v1.5](https://huggingface.co/lmsys/vicuna-7b-v1.5) license.
**Where to send questions or comments about the model:**
https://github.com/RifleZhang/LLaVA-Hound-DPO/issues
## Intended use
**Primary intended uses:**
Video (image) instruction-following.
**Primary intended users:**
Researchers in artificial intelligence, large multimodal model, etc.
## Training dataset
ShareGPTVideo dataset.
## Evaluation
Follow https://github.com/RifleZhang/LLaVA-Hound-DPO/blob/main/README.md
## Paper
https://huggingface.co/papers/2404.01258
citation
```
@article{zhang2024direct,
title={Direct Preference Optimization of Video Large Multimodal Models from Language Model Reward},
author={Zhang, Ruohong and Gui, Liangke and Sun, Zhiqing and Feng, Yihao and Xu, Keyang and Zhang, Yuanhan and Fu, Di and Li, Chunyuan and Hauptmann, Alexander and Bisk, Yonatan and others},
journal={arXiv preprint arXiv:2404.01258},
year={2024}
}
```