File size: 9,191 Bytes
24f429c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 |
---
base_model: sentence-transformers/paraphrase-mpnet-base-v2
library_name: setfit
metrics:
- accuracy
pipeline_tag: text-classification
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: I ordered the Cake Decorating Kit 4 days ago, can you provide the tracking
information?
- text: Do you have any smart accessories in black color?
- text: What products are included in the Smart-Combo Wallet bot Classic + Smart FingerLock
Backpack?
- text: What smart luggage options do you have for men?
- text: I want to deliver candle supplies to Jaipur, how many days will it take to
deliver?
inference: true
model-index:
- name: SetFit with sentence-transformers/paraphrase-mpnet-base-v2
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: accuracy
value: 0.9565217391304348
name: Accuracy
---
# SetFit with sentence-transformers/paraphrase-mpnet-base-v2
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
## Model Details
### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 512 tokens
- **Number of Classes:** 5 classes
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
### Model Labels
| Label | Examples |
|:------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| order tracking | <ul><li>'My order has been shipped 6 days ago but still not out for delivery. Can you tell how long will it take to deliver?'</li><li>'I want to deliver packaging to Surat, how many days will it take to deliver?'</li><li>'Do you provide shipping insurance for high-value orders?'</li></ul> |
| product faq | <ul><li>'Is the Smart Keychain in Navy Blue available for women?'</li><li>'Is the Smart Fingerlock Backpack Leather in Black targeted towards men, women, or unisex?'</li><li>'1. Can you tell me the price of the smart luggage?'</li></ul> |
| general faq | <ul><li>"Can you explain how the 'Follow Me' feature works in Arista Vault's smart luggage?"</li><li>"What makes Arista Vault's smart luggage a good investment for business travelers?"</li><li>"How does the fingerprint lock technology in Arista Vault's smart luggage enhance security?"</li></ul> |
| product policy | <ul><li>'Can I register multiple accounts for the Arista Vault Affiliate Program?'</li><li>'What is your return and exchange policy?'</li><li>'How do I receive my referral fees and commissions?'</li></ul> |
| product discoverability | <ul><li>'Do you have any smart accessories in blue color?'</li><li>'What is the price of the smart luggage for women?'</li><li>'Which smart backpacks are available in nylon material?'</li></ul> |
## Evaluation
### Metrics
| Label | Accuracy |
|:--------|:---------|
| **all** | 0.9565 |
## Uses
### Direct Use for Inference
First install the SetFit library:
```bash
pip install setfit
```
Then you can load this model and run inference.
```python
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("setfit_model_id")
# Run inference
preds = model("What smart luggage options do you have for men?")
```
<!--
### Downstream Use
*List how someone could finetune this model on their own dataset.*
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Set Metrics
| Training set | Min | Median | Max |
|:-------------|:----|:--------|:----|
| Word count | 6 | 11.6304 | 24 |
| Label | Training Sample Count |
|:------------------------|:----------------------|
| Out of Scope | 0 |
| general faq | 4 |
| order tracking | 24 |
| product discoverability | 16 |
| product faq | 24 |
| product policy | 24 |
### Training Hyperparameters
- batch_size: (16, 16)
- num_epochs: (2, 2)
- max_steps: -1
- sampling_strategy: oversampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: True
### Training Results
| Epoch | Step | Training Loss | Validation Loss |
|:------:|:----:|:-------------:|:---------------:|
| 0.0025 | 1 | 0.2167 | - |
| 0.1238 | 50 | 0.0573 | - |
| 0.2475 | 100 | 0.0002 | - |
| 0.3713 | 150 | 0.0009 | - |
| 0.4950 | 200 | 0.0001 | - |
| 0.6188 | 250 | 0.0 | - |
| 0.7426 | 300 | 0.0 | - |
| 0.8663 | 350 | 0.0 | - |
| 0.9901 | 400 | 0.0 | - |
| 1.1139 | 450 | 0.0 | - |
| 1.2376 | 500 | 0.0 | - |
| 1.3614 | 550 | 0.0 | - |
| 1.4851 | 600 | 0.0001 | - |
| 1.6089 | 650 | 0.0 | - |
| 1.7327 | 700 | 0.0 | - |
| 1.8564 | 750 | 0.0 | - |
| 1.9802 | 800 | 0.0 | - |
### Framework Versions
- Python: 3.10.16
- SetFit: 1.0.3
- Sentence Transformers: 2.7.0
- Transformers: 4.40.2
- PyTorch: 2.2.2
- Datasets: 2.19.1
- Tokenizers: 0.19.1
## Citation
### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |