File size: 9,191 Bytes
24f429c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
---
base_model: sentence-transformers/paraphrase-mpnet-base-v2
library_name: setfit
metrics:
- accuracy
pipeline_tag: text-classification
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: I ordered the Cake Decorating Kit 4 days ago, can you provide the tracking
    information?
- text: Do you have any smart accessories in black color?
- text: What products are included in the Smart-Combo Wallet bot Classic + Smart FingerLock
    Backpack?
- text: What smart luggage options do you have for men?
- text: I want to deliver candle supplies to Jaipur, how many days will it take to
    deliver?
inference: true
model-index:
- name: SetFit with sentence-transformers/paraphrase-mpnet-base-v2
  results:
  - task:
      type: text-classification
      name: Text Classification
    dataset:
      name: Unknown
      type: unknown
      split: test
    metrics:
    - type: accuracy
      value: 0.9565217391304348
      name: Accuracy
---

# SetFit with sentence-transformers/paraphrase-mpnet-base-v2

This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.

## Model Details

### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 512 tokens
- **Number of Classes:** 5 classes
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)

### Model Labels
| Label                   | Examples                                                                                                                                                                                                                                                                                                |
|:------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| order tracking          | <ul><li>'My order has been shipped 6 days ago but still not out for delivery. Can you tell how long will it take to deliver?'</li><li>'I want to deliver packaging to Surat, how many days will it take to deliver?'</li><li>'Do you provide shipping insurance for high-value orders?'</li></ul>       |
| product faq             | <ul><li>'Is the Smart Keychain in Navy Blue available for women?'</li><li>'Is the Smart Fingerlock Backpack Leather in Black targeted towards men, women, or unisex?'</li><li>'1. Can you tell me the price of the smart luggage?'</li></ul>                                                            |
| general faq             | <ul><li>"Can you explain how the 'Follow Me' feature works in Arista Vault's smart luggage?"</li><li>"What makes Arista Vault's smart luggage a good investment for business travelers?"</li><li>"How does the fingerprint lock technology in Arista Vault's smart luggage enhance security?"</li></ul> |
| product policy          | <ul><li>'Can I register multiple accounts for the Arista Vault Affiliate Program?'</li><li>'What is your return and exchange policy?'</li><li>'How do I receive my referral fees and commissions?'</li></ul>                                                                                            |
| product discoverability | <ul><li>'Do you have any smart accessories in blue color?'</li><li>'What is the price of the smart luggage for women?'</li><li>'Which smart backpacks are available in nylon material?'</li></ul>                                                                                                       |

## Evaluation

### Metrics
| Label   | Accuracy |
|:--------|:---------|
| **all** | 0.9565   |

## Uses

### Direct Use for Inference

First install the SetFit library:

```bash
pip install setfit
```

Then you can load this model and run inference.

```python
from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("setfit_model_id")
# Run inference
preds = model("What smart luggage options do you have for men?")
```

<!--
### Downstream Use

*List how someone could finetune this model on their own dataset.*
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Set Metrics
| Training set | Min | Median  | Max |
|:-------------|:----|:--------|:----|
| Word count   | 6   | 11.6304 | 24  |

| Label                   | Training Sample Count |
|:------------------------|:----------------------|
| Out of Scope            | 0                     |
| general faq             | 4                     |
| order tracking          | 24                    |
| product discoverability | 16                    |
| product faq             | 24                    |
| product policy          | 24                    |

### Training Hyperparameters
- batch_size: (16, 16)
- num_epochs: (2, 2)
- max_steps: -1
- sampling_strategy: oversampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: True

### Training Results
| Epoch  | Step | Training Loss | Validation Loss |
|:------:|:----:|:-------------:|:---------------:|
| 0.0025 | 1    | 0.2167        | -               |
| 0.1238 | 50   | 0.0573        | -               |
| 0.2475 | 100  | 0.0002        | -               |
| 0.3713 | 150  | 0.0009        | -               |
| 0.4950 | 200  | 0.0001        | -               |
| 0.6188 | 250  | 0.0           | -               |
| 0.7426 | 300  | 0.0           | -               |
| 0.8663 | 350  | 0.0           | -               |
| 0.9901 | 400  | 0.0           | -               |
| 1.1139 | 450  | 0.0           | -               |
| 1.2376 | 500  | 0.0           | -               |
| 1.3614 | 550  | 0.0           | -               |
| 1.4851 | 600  | 0.0001        | -               |
| 1.6089 | 650  | 0.0           | -               |
| 1.7327 | 700  | 0.0           | -               |
| 1.8564 | 750  | 0.0           | -               |
| 1.9802 | 800  | 0.0           | -               |

### Framework Versions
- Python: 3.10.16
- SetFit: 1.0.3
- Sentence Transformers: 2.7.0
- Transformers: 4.40.2
- PyTorch: 2.2.2
- Datasets: 2.19.1
- Tokenizers: 0.19.1

## Citation

### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->