Shahradmz commited on
Commit
22c9a77
·
verified ·
1 Parent(s): 140bf06

End of training

Browse files
Files changed (3) hide show
  1. README.md +66 -0
  2. all_results.json +4 -0
  3. eval_results.json +4 -0
README.md ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: Qwen/Qwen2-0.5B-Instruct
3
+ datasets: Continual_PPO_EWC_continual_data_debug_1
4
+ library_name: transformers
5
+ model_name: Qwen2-0.5B-Instruct_continual_data_debug_PPO_EWC_1
6
+ tags:
7
+ - generated_from_trainer
8
+ licence: license
9
+ ---
10
+
11
+ # Model Card for Qwen2-0.5B-Instruct_continual_data_debug_PPO_EWC_1
12
+
13
+ This model is a fine-tuned version of [Qwen/Qwen2-0.5B-Instruct](https://huggingface.co/Qwen/Qwen2-0.5B-Instruct) on the [Continual_PPO_EWC_continual_data_debug_1](https://huggingface.co/datasets/Continual_PPO_EWC_continual_data_debug_1) dataset.
14
+ It has been trained using [TRL](https://github.com/huggingface/trl).
15
+
16
+ ## Quick start
17
+
18
+ ```python
19
+ from transformers import pipeline
20
+
21
+ question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
22
+ generator = pipeline("text-generation", model="Shahradmz/Qwen2-0.5B-Instruct_continual_data_debug_PPO_EWC_1", device="cuda")
23
+ output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
24
+ print(output["generated_text"])
25
+ ```
26
+
27
+ ## Training procedure
28
+
29
+ [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/shahrad_m/AIFGen-ppo-EWC-continual-test/runs/itkkgn7i)
30
+
31
+
32
+ This model was trained with PPO, a method introduced in [Fine-Tuning Language Models from Human Preferences](https://huggingface.co/papers/1909.08593).
33
+
34
+ ### Framework versions
35
+
36
+ - TRL: 0.15.2
37
+ - Transformers: 4.49.0
38
+ - Pytorch: 2.3.0
39
+ - Datasets: 3.3.2
40
+ - Tokenizers: 0.21.0
41
+
42
+ ## Citations
43
+
44
+ Cite PPO as:
45
+
46
+ ```bibtex
47
+ @article{mziegler2019fine-tuning,
48
+ title = {{Fine-Tuning Language Models from Human Preferences}},
49
+ author = {Daniel M. Ziegler and Nisan Stiennon and Jeffrey Wu and Tom B. Brown and Alec Radford and Dario Amodei and Paul F. Christiano and Geoffrey Irving},
50
+ year = 2019,
51
+ eprint = {arXiv:1909.08593}
52
+ }
53
+ ```
54
+
55
+ Cite TRL as:
56
+
57
+ ```bibtex
58
+ @misc{vonwerra2022trl,
59
+ title = {{TRL: Transformer Reinforcement Learning}},
60
+ author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
61
+ year = 2020,
62
+ journal = {GitHub repository},
63
+ publisher = {GitHub},
64
+ howpublished = {\url{https://github.com/huggingface/trl}}
65
+ }
66
+ ```
all_results.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "dataset": 1,
3
+ "eval_score": -3.1845033168792725
4
+ }
eval_results.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "dataset": 1,
3
+ "eval_score": -3.1845033168792725
4
+ }