--- language: cs license: cc-by-4.0 --- # Small-E-Czech Small-E-Czech is an [Electra](https://arxiv.org/abs/2003.10555)-small model pretrained on a Czech web corpus created at [Seznam.cz](https://www.seznam.cz/). Like other pretrained models, it should be finetuned on a downstream task of interest before use. At Seznam.cz, it has helped improve [web search ranking](https://blog.seznam.cz/2021/02/vyhledavani-pomoci-vyznamovych-vektoru/), query typo correction or clickbait titles detection. We release it under [CC BY 4.0 license](https://creativecommons.org/licenses/by/4.0/) (i.e. allowing commercial use). ### How to use the discriminator in transformers ```python from transformers import ElectraForPreTraining, ElectraTokenizerFast import torch discriminator = ElectraForPreTraining.from_pretrained("Seznam/small-e-czech") tokenizer = ElectraTokenizerFast.from_pretrained("Seznam/small-e-czech") sentence = "Za hory, za doly, mé zlaté parohy" fake_sentence = "Za hory, za doly, kočka zlaté parohy" fake_sentence_tokens = ["[CLS]"] + tokenizer.tokenize(fake_sentence) + ["[SEP]"] fake_inputs = tokenizer.encode(fake_sentence, return_tensors="pt") outputs = discriminator(fake_inputs) predictions = torch.nn.Sigmoid()(outputs[0]).cpu().detach().numpy() for token in fake_sentence_tokens: print("{:>7s}".format(token), end="") print() for prediction in predictions.squeeze(): print("{:7.1f}".format(prediction), end="") print() ``` In the output we can see the probabilities of particular tokens not belonging in the sentence (i.e. having been faked by the generator) according to the discriminator: ``` [CLS] za hory , za dol ##y , kočka zlaté paro ##hy [SEP] 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.8 0.3 0.2 0.1 0.0 ``` ### Finetuning For instructions on how to finetune the model on a new task, see the official HuggingFace transformers [tutorial](https://huggingface.co/transformers/training.html).