{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x786f79310a40>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1734605790836331464, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADPSeL1s8es87fa5PXKnQr7Lgu08uAeDvAAAAAAAAAAAvRdcvo7u+D4WK6g+QfGKvmHJpD39mNk9AAAAAAAAAACm5wU+shhqP8fMQr6E2aa+FZjVPbKB170AAAAAAAAAAI2pfD51KBM/iQSFvnsftr5GG44+PUmDvgAAAAAAAAAATYBfPaXMTj5OCPy9Z9hvvqSvf73iwao7AAAAAAAAAABzp7s9gxbCP0aUyz6B4zW9sicKPtJdgz4AAAAAAAAAABoFWr2JpQQ9erM0PVMISL57ojW7FpPPPAAAAAAAAAAAmicZveESgbq725k7Z8wBOQPQHbt2/je6AACAPwAAgD+qQp6+CL9FP7vhEz4W+Ly+Crq8vYr1CT4AAAAAAAAAABpCVb1xWXk6cmkuPeMeKr6d2qg8oKzFvgAAAAAAAIA/AIAdub6etT9UobW6+s3OvR1NOjkeqqI5AAAAAAAAAADNePO7/SZXPpINHT1hqoG+4eBGvcqJZD0AAAAAAAAAAD26UL448N4+W7fLPrDQg75TOLI9iqADPgAAAAAAAAAA5s+pvXsqi7p6iKs2TdM0sfGeQbuEuMW1AACAPwAAgD+aWda71KoUPv6oIz7zy3i+Fa0fPQZHFj0AAAAAAAAAAE2lmr2UEZw/ZnXRvqkF+76AyP297sqLvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVMgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHBCB+z+m3yMAWyUTVgBjAF0lEdAkQy+7UXpGHV9lChoBkdAcJeVf/m1Y2gHTS4BaAhHQJEM+2SdOIt1fZQoaAZHQHGSTRIBikRoB0vyaAhHQJENAubqhUR1fZQoaAZHQG08ZoGpuMxoB00gAWgIR0CRDVxjriVCdX2UKGgGR0BuJeKXOW0JaAdNLAFoCEdAkQ27fxc3VHV9lChoBkdAbsHld1MdtGgHTRwBaAhHQJEOzdadMCd1fZQoaAZHQHNyYQBgeBBoB00YAWgIR0CRDvySV4X5dX2UKGgGR0BxzIJ5VwPzaAdL/2gIR0CRDwMmWt2cdX2UKGgGR0Bt2RSvTw2EaAdNSwFoCEdAkQ+8E/0NBnV9lChoBkdAcI1owVTJhmgHTSABaAhHQJEP1kYoAn51fZQoaAZHQHI2cuez2OBoB0v9aAhHQJEQtVFQVKx1fZQoaAZHQHFAeUD+zdFoB006AWgIR0CREVcNpdrwdX2UKGgGR0Bx10zabnX/aAdNdwFoCEdAkRIvgBLf13V9lChoBkdAb5lWgezUqmgHTQgBaAhHQJES6KO1fE51fZQoaAZHQHGW+IqLCN1oB01AAWgIR0CRE+eGfwqidX2UKGgGR0BFGvSMLncMaAdL62gIR0CRE/HMEA5rdX2UKGgGR0Bw08rYoRZmaAdNOQFoCEdAkRZTPOY6XHV9lChoBkdAcZn2l2vB8GgHTW8BaAhHQJEW79jwx351fZQoaAZHQHKl0EX+ERJoB01YAWgIR0CRF8Er5IpZdX2UKGgGR0BxISMglnh9aAdL/GgIR0CRF84xDb8FdX2UKGgGR0BxqKBmPHT7aAdNJgFoCEdAkRgIVZcLSnV9lChoBkdAcIkKvmoze2gHTVUBaAhHQJEYCPmxMWZ1fZQoaAZHQHH3Nalk6LhoB01NAWgIR0CRGCl0o0AMdX2UKGgGR0BxZlpsXSBtaAdNJwFoCEdAkRhAHRkVe3V9lChoBkdAcLVuWKMvRWgHTSwBaAhHQJEYW8yvcJt1fZQoaAZHQHMXopDu0C1oB00CAWgIR0CRGW99c8kldX2UKGgGR0BOC/s3Q2MsaAdL7WgIR0CRGa5yEL6UdX2UKGgGR0BxuxtwaR6oaAdNZgFoCEdAkRqQiRnvlXV9lChoBkdAcTyrvsqrimgHS/poCEdAkRqtT5wfhnV9lChoBkdAcP+0a6z3RGgHTWkBaAhHQJEbj4k/r0J1fZQoaAZHQHIWlUIcBENoB00JAWgIR0CRG9XEZR8/dX2UKGgGR0Bw+MaESM99aAdNJQFoCEdAkRyYTGo73nV9lChoBkdAbPF7tzCDVmgHTQkBaAhHQJEd1vaURnR1fZQoaAZHQDpLFMqSX+loB0vhaAhHQJEeSuLaVUx1fZQoaAZHQG9zUdaMaS9oB00DAWgIR0CRHvI/7iyZdX2UKGgGR0Bvl5AQg9vCaAdNHAFoCEdAkR73VG0/nnV9lChoBkdAcZ5xTsIE82gHTSUBaAhHQJEgP+m3vx91fZQoaAZHQHB6m9pRGc5oB00rAWgIR0CRIG8v24/edX2UKGgGR0BwUiMkyDZlaAdNIQFoCEdAkSB+AuqWC3V9lChoBkdAcaQg1FYuCmgHTQ0BaAhHQJEhX0Gu9vl1fZQoaAZHQHBdMbm2b5NoB00CAWgIR0CRIfbxmTTwdX2UKGgGR0BxKqd6LOzIaAdL/mgIR0CRIfphWo3rdX2UKGgGR0BxrEbhm5DraAdNRwFoCEdAkSLJvHcUNHV9lChoBkdAcnEIikfs/2gHTRoBaAhHQJEkd8b70nR1fZQoaAZHQHD9a/dqL0loB02wAWgIR0CRJNbGm1pkdX2UKGgGR0BwywLE1l5GaAdNYgFoCEdAkScsfRu0kXV9lChoBkdAbZnxy4nWrmgHTRABaAhHQJEnOPyTY/V1fZQoaAZHQGxxt4JNTLpoB00bAWgIR0CRPHtOmBOIdX2UKGgGR0Bx/x9F4LThaAdNWgFoCEdAkTylHSWqtHV9lChoBkdAcCCRhc7hemgHTRkBaAhHQJE9DChvitJ1fZQoaAZHQHIzQQ176YVoB0vyaAhHQJE9Vsl9jPR1fZQoaAZHQHAVHRw6ySpoB0v+aAhHQJE9deSjgyd1fZQoaAZHQHBUDa0x/NJoB01CAWgIR0CRPjeyiVSodX2UKGgGR0BzG7SeAd4naAdNIgFoCEdAkT6tm+TNdXV9lChoBkdAchMhMajveGgHTQkBaAhHQJFAWfYjB2x1fZQoaAZHQHKMhVU+9rZoB009AWgIR0CRQHNY8uBddX2UKGgGR0ByWaslsxfwaAdNUwFoCEdAkUGqBmPHUHV9lChoBkdAcJLkdmxt52gHTW0BaAhHQJFCioAGSp11fZQoaAZHQHCa/YODrZ9oB00fAWgIR0CRQrRB/qgRdX2UKGgGR0BxGvqB3A2yaAdNRQFoCEdAkUOcVxjriXV9lChoBkdAbACBPKuB+WgHTRcBaAhHQJFEJoEjgQ91fZQoaAZHQHIoXkcS5AhoB00hAWgIR0CRRG6ltTDPdX2UKGgGR0BzctNHpbD/aAdL9GgIR0CRRGybx3FDdX2UKGgGR0BxPlxdY4hmaAdNDQFoCEdAkUTELlV94XV9lChoBkdAcg9Jtix3V2gHS/hoCEdAkUTOQ6p5vHV9lChoBkdAcGe1WsA/92gHTS4BaAhHQJFFhaPjn3d1fZQoaAZHQHCuxNmDlHVoB00YAWgIR0CRRoVvuPV/dX2UKGgGR0BwaaC4BmwraAdNWAFoCEdAkUeewcHW0HV9lChoBkdAcCBzcynDSGgHS/toCEdAkUfoDxLCenV9lChoBkdAcWc7muDBdmgHTS8BaAhHQJFJeYc/+sJ1fZQoaAZHQHFOgYHgP3BoB00gAWgIR0CRSoMju8brdX2UKGgGR0BZr5DiOvMbaAdN6ANoCEdAkUrxFd9lVnV9lChoBkdAcnAx5cC5mWgHTTMBaAhHQJFMKHgxagV1fZQoaAZHQHAAL5ZbILhoB00GAWgIR0CRTLLaVUuMdX2UKGgGR0Bs82+7Dl5oaAdNLQFoCEdAkU0zhxYJV3V9lChoBkdAQjd61LJ0XGgHS8toCEdAkU1RBRhttXV9lChoBkdAb2FCswL3K2gHTQsBaAhHQJFNWtozvZ11fZQoaAZHQHImWcWj459oB00VAWgIR0CRTaFI/Z/TdX2UKGgGR0BwNAQ8OkLyaAdNYgFoCEdAkU3ycoYvWnV9lChoBkdAcLPJiiItUWgHTUwBaAhHQJFO5L5AQg91fZQoaAZHQG6LYZ/CqIdoB00HAWgIR0CRUDYhMajvdX2UKGgGR0Bvt9IPK+zuaAdNYAFoCEdAkVC3y3CsO3V9lChoBkdAbasgCfYjB2gHTbYBaAhHQJFR47eVLSN1fZQoaAZHQHH0C1iONo9oB00DAWgIR0CRUfNlyzX0dX2UKGgGR0BxwYrpaA4GaAdNRgFoCEdAkVJ9FSbYsnV9lChoBkdAcgyet0V8C2gHS/VoCEdAkVLG7OE/S3V9lChoBkdAbqiXNTtLMGgHTQIBaAhHQJFUpRAKOT91fZQoaAZHQHFdHdbgTAZoB0v2aAhHQJFVIJJGvwF1fZQoaAZHQHGZFijL0SRoB01iAWgIR0CRVdM4cWCVdX2UKGgGR0Bzf4xEfDDTaAdNNgFoCEdAkVXhZMcp9nV9lChoBkdAbo50nPVurWgHS/BoCEdAkVZPuG9HtnV9lChoBkdAbtqqFRHf/GgHTSsBaAhHQJFWhFz+3ph1fZQoaAZHQHEITCLuQZJoB00VA2gIR0CRVyys0YTCdX2UKGgGR0Bxi++AVfu1aAdNRAFoCEdAkVcqNQ0oB3V9lChoBkdAchh6Y3Ns32gHTQABaAhHQJFYs11nuiN1fZQoaAZHQHJTn05EMLFoB011AWgIR0CRWO8TSLIgdX2UKGgGR0BxW6iQDFIeaAdNGgFoCEdAkVkk65oXbnV9lChoBkdAcbsizsyBTWgHTQwBaAhHQJFbfTRYzSF1fZQoaAZHQHEZChi9ZidoB00GAWgIR0CRW6mMfigkdX2UKGgGR0BwPMgxJul5aAdNKAFoCEdAkVvoHHFPznVlLg=="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.5.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.0", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}