--- base_model: stable-diffusion-v1-5/stable-diffusion-v1-5 library_name: diffusers license: creativeml-openrail-m tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - diffusers-training - lora - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - diffusers-training - lora inference: true datasets: - logo-wizard/modern-logo-dataset --- # LoRA text2image fine-tuning - SedatAl/test-test These are LoRA adaption weights for stable-diffusion-v1-5/stable-diffusion-v1-5. The weights were fine-tuned on the logo-wizard/modern-logo-dataset dataset. ![img_1](./7c970728-3193-4d89-8461-514bae4007af.jpeg) ![img_2](./image_2.png) ![img_3](./image_3.png) ## How to Use ```python from diffusers import DiffusionPipeline pipe = DiffusionPipeline.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5") pipe.load_lora_weights("SedatAl/test-test") prompt = "a logo of electronic online shop, gradient image of a rectangular shopping bag with a cursor inside, white background, red and magenta gradient foreground, minimalism, modern" image = pipe(prompt).images[0] ``` ## Training details --train_batch_size=10 \ --max_train_steps=200 \ --learning_rate=1e-04 \ Remaining parameters are default.