Commit
Β·
9ce2df1
1
Parent(s):
c2ec4bf
Upload ch3.ipynb
Browse files
ch3.ipynb
ADDED
|
@@ -0,0 +1,1335 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "markdown",
|
| 5 |
+
"metadata": {},
|
| 6 |
+
"source": [
|
| 7 |
+
"# Processing data"
|
| 8 |
+
]
|
| 9 |
+
},
|
| 10 |
+
{
|
| 11 |
+
"cell_type": "code",
|
| 12 |
+
"execution_count": 4,
|
| 13 |
+
"metadata": {},
|
| 14 |
+
"outputs": [],
|
| 15 |
+
"source": [
|
| 16 |
+
"import torch\n",
|
| 17 |
+
"from torch.utils.data import DataLoader\n",
|
| 18 |
+
"from transformers import get_scheduler, TrainingArguments, Trainer, DataCollatorWithPadding, AdamW, AutoTokenizer, AutoModelForSequenceClassification\n",
|
| 19 |
+
"from datasets import load_dataset\n",
|
| 20 |
+
"import gc\n",
|
| 21 |
+
"import numpy as np\n",
|
| 22 |
+
"from datasets import load_metric\n",
|
| 23 |
+
"import random\n",
|
| 24 |
+
"import os\n",
|
| 25 |
+
"from tqdm.auto import tqdm"
|
| 26 |
+
]
|
| 27 |
+
},
|
| 28 |
+
{
|
| 29 |
+
"cell_type": "code",
|
| 30 |
+
"execution_count": 5,
|
| 31 |
+
"metadata": {},
|
| 32 |
+
"outputs": [],
|
| 33 |
+
"source": [
|
| 34 |
+
"os.environ['CUDA_LAUNCH_BLOCKING'] = '1'"
|
| 35 |
+
]
|
| 36 |
+
},
|
| 37 |
+
{
|
| 38 |
+
"cell_type": "code",
|
| 39 |
+
"execution_count": 6,
|
| 40 |
+
"metadata": {},
|
| 41 |
+
"outputs": [],
|
| 42 |
+
"source": [
|
| 43 |
+
"# reset GPU memory\n",
|
| 44 |
+
"gc.collect()\n",
|
| 45 |
+
"torch.cuda.empty_cache()"
|
| 46 |
+
]
|
| 47 |
+
},
|
| 48 |
+
{
|
| 49 |
+
"cell_type": "code",
|
| 50 |
+
"execution_count": 3,
|
| 51 |
+
"metadata": {},
|
| 52 |
+
"outputs": [
|
| 53 |
+
{
|
| 54 |
+
"ename": "NameError",
|
| 55 |
+
"evalue": "name 'AutoTokenizer' is not defined",
|
| 56 |
+
"output_type": "error",
|
| 57 |
+
"traceback": [
|
| 58 |
+
"\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
|
| 59 |
+
"\u001b[1;31mNameError\u001b[0m Traceback (most recent call last)",
|
| 60 |
+
"\u001b[1;32m<ipython-input-3-f5793421e6ee>\u001b[0m in \u001b[0;36m<module>\u001b[1;34m\u001b[0m\n\u001b[0;32m 1\u001b[0m \u001b[0mcheckpoint\u001b[0m \u001b[1;33m=\u001b[0m \u001b[1;34m\"bert-base-uncased\"\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m----> 2\u001b[1;33m \u001b[0mtokenizer\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mAutoTokenizer\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mfrom_pretrained\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mcheckpoint\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m",
|
| 61 |
+
"\u001b[1;31mNameError\u001b[0m: name 'AutoTokenizer' is not defined"
|
| 62 |
+
]
|
| 63 |
+
}
|
| 64 |
+
],
|
| 65 |
+
"source": [
|
| 66 |
+
"checkpoint = \"bert-base-uncased\"\n",
|
| 67 |
+
"tokenizer = AutoTokenizer.from_pretrained(checkpoint)"
|
| 68 |
+
]
|
| 69 |
+
},
|
| 70 |
+
{
|
| 71 |
+
"cell_type": "code",
|
| 72 |
+
"execution_count": 5,
|
| 73 |
+
"metadata": {},
|
| 74 |
+
"outputs": [
|
| 75 |
+
{
|
| 76 |
+
"name": "stderr",
|
| 77 |
+
"output_type": "stream",
|
| 78 |
+
"text": [
|
| 79 |
+
"Some weights of the model checkpoint at bert-base-uncased were not used when initializing BertForSequenceClassification: ['cls.seq_relationship.weight', 'cls.predictions.transform.dense.bias', 'cls.predictions.transform.LayerNorm.bias', 'cls.seq_relationship.bias', 'cls.predictions.bias', 'cls.predictions.transform.LayerNorm.weight', 'cls.predictions.decoder.weight', 'cls.predictions.transform.dense.weight']\n",
|
| 80 |
+
"- This IS expected if you are initializing BertForSequenceClassification from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n",
|
| 81 |
+
"- This IS NOT expected if you are initializing BertForSequenceClassification from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n",
|
| 82 |
+
"Some weights of BertForSequenceClassification were not initialized from the model checkpoint at bert-base-uncased and are newly initialized: ['classifier.weight', 'classifier.bias']\n",
|
| 83 |
+
"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n"
|
| 84 |
+
]
|
| 85 |
+
}
|
| 86 |
+
],
|
| 87 |
+
"source": [
|
| 88 |
+
"checkpoint = \"bert-base-uncased\"\n",
|
| 89 |
+
"tokenizer = AutoTokenizer.from_pretrained(checkpoint)\n",
|
| 90 |
+
"model = AutoModelForSequenceClassification.from_pretrained(checkpoint)"
|
| 91 |
+
]
|
| 92 |
+
},
|
| 93 |
+
{
|
| 94 |
+
"cell_type": "code",
|
| 95 |
+
"execution_count": 3,
|
| 96 |
+
"metadata": {},
|
| 97 |
+
"outputs": [],
|
| 98 |
+
"source": [
|
| 99 |
+
"sequences = [\n",
|
| 100 |
+
" \"I've been waiting for a HuggingFace course my whole life.\",\n",
|
| 101 |
+
" \"This course is amazing!\",\n",
|
| 102 |
+
"]\n",
|
| 103 |
+
"batch = tokenizer(sequences, padding=True, truncation=True, return_tensors=\"pt\")\n",
|
| 104 |
+
"batch[\"labels\"] = torch.tensor([1, 1])\n",
|
| 105 |
+
"optimizer = AdamW(model.parameters())\n",
|
| 106 |
+
"loss = model(**batch).loss\n",
|
| 107 |
+
"loss.backward()\n",
|
| 108 |
+
"optimizer.step()"
|
| 109 |
+
]
|
| 110 |
+
},
|
| 111 |
+
{
|
| 112 |
+
"cell_type": "code",
|
| 113 |
+
"execution_count": 4,
|
| 114 |
+
"metadata": {},
|
| 115 |
+
"outputs": [
|
| 116 |
+
{
|
| 117 |
+
"name": "stderr",
|
| 118 |
+
"output_type": "stream",
|
| 119 |
+
"text": [
|
| 120 |
+
"Reusing dataset glue (C:\\Users\\1seba\\.cache\\huggingface\\datasets\\glue\\mrpc\\1.0.0\\dacbe3125aa31d7f70367a07a8a9e72a5a0bfeb5fc42e75c9db75b96da6053ad)\n"
|
| 121 |
+
]
|
| 122 |
+
}
|
| 123 |
+
],
|
| 124 |
+
"source": [
|
| 125 |
+
"raw_datasets = load_dataset(\"glue\",\"mrpc\")\n",
|
| 126 |
+
"raw_train_dataset = raw_datasets['train']\n",
|
| 127 |
+
"# print(raw_train_dataset.features)\n",
|
| 128 |
+
"tokenizer = AutoTokenizer.from_pretrained(checkpoint)\n",
|
| 129 |
+
"# # WHY CANT WE PASS THE DIFFERENT SENTENCES TOGETHER\n",
|
| 130 |
+
"# tokenized_sentences_1 = tokenizer(raw_train_dataset[15]['sentence1'])\n",
|
| 131 |
+
"# tokenized_sentences_2 = tokenizer(raw_train_dataset[15]['sentence2'])\n",
|
| 132 |
+
"# print(tokenizer.decode(tokenized_sentences_1.input_ids), tokenizer.decode(tokenized_sentences_2.input_ids))\n",
|
| 133 |
+
"# inputs = tokenizer(raw_train_dataset[15]['sentence1'], raw_train_dataset[15]['sentence2'])\n",
|
| 134 |
+
"# print(tokenizer.decode(inputs.input_ids))\n",
|
| 135 |
+
"inputs = tokenizer(raw_train_dataset['sentence1'], raw_train_dataset['sentence2'], padding=True, truncation=True)\n",
|
| 136 |
+
"\n",
|
| 137 |
+
"# tokenized_datasets = raw_datasets.map(tokenize_function, batched=False)\n",
|
| 138 |
+
"# print(tokenized_datasets['train'].features)"
|
| 139 |
+
]
|
| 140 |
+
},
|
| 141 |
+
{
|
| 142 |
+
"cell_type": "code",
|
| 143 |
+
"execution_count": 5,
|
| 144 |
+
"metadata": {},
|
| 145 |
+
"outputs": [
|
| 146 |
+
{
|
| 147 |
+
"data": {
|
| 148 |
+
"text/plain": [
|
| 149 |
+
"['input_ids', 'token_type_ids', 'attention_mask']"
|
| 150 |
+
]
|
| 151 |
+
},
|
| 152 |
+
"execution_count": 5,
|
| 153 |
+
"metadata": {},
|
| 154 |
+
"output_type": "execute_result"
|
| 155 |
+
}
|
| 156 |
+
],
|
| 157 |
+
"source": [
|
| 158 |
+
"list(inputs.keys())"
|
| 159 |
+
]
|
| 160 |
+
},
|
| 161 |
+
{
|
| 162 |
+
"cell_type": "code",
|
| 163 |
+
"execution_count": 6,
|
| 164 |
+
"metadata": {},
|
| 165 |
+
"outputs": [
|
| 166 |
+
{
|
| 167 |
+
"name": "stderr",
|
| 168 |
+
"output_type": "stream",
|
| 169 |
+
"text": [
|
| 170 |
+
"100%|ββββββββββ| 4/4 [00:01<00:00, 3.69ba/s]\n",
|
| 171 |
+
"100%|ββββββββββ| 1/1 [00:00<00:00, 16.42ba/s]\n",
|
| 172 |
+
"100%|ββββββββββ| 2/2 [00:00<00:00, 6.22ba/s]\n"
|
| 173 |
+
]
|
| 174 |
+
}
|
| 175 |
+
],
|
| 176 |
+
"source": [
|
| 177 |
+
"def tokenize_function(example):\n",
|
| 178 |
+
" tokenized = tokenizer(example['sentence1'], example['sentence2'], truncation=True)\n",
|
| 179 |
+
"# tokenized['input_ids'] = ['CHANGED!' for item in tokenized['input_ids']]\n",
|
| 180 |
+
" return tokenized\n",
|
| 181 |
+
"tokenized_datasets = raw_datasets.map(tokenize_function, batched=True)"
|
| 182 |
+
]
|
| 183 |
+
},
|
| 184 |
+
{
|
| 185 |
+
"cell_type": "code",
|
| 186 |
+
"execution_count": 9,
|
| 187 |
+
"metadata": {},
|
| 188 |
+
"outputs": [],
|
| 189 |
+
"source": [
|
| 190 |
+
"data_collator = DataCollatorWithPadding(tokenizer=tokenizer)"
|
| 191 |
+
]
|
| 192 |
+
},
|
| 193 |
+
{
|
| 194 |
+
"cell_type": "code",
|
| 195 |
+
"execution_count": 10,
|
| 196 |
+
"metadata": {},
|
| 197 |
+
"outputs": [
|
| 198 |
+
{
|
| 199 |
+
"data": {
|
| 200 |
+
"text/plain": [
|
| 201 |
+
"[50, 59, 47, 67, 59, 50, 62, 32]"
|
| 202 |
+
]
|
| 203 |
+
},
|
| 204 |
+
"execution_count": 10,
|
| 205 |
+
"metadata": {},
|
| 206 |
+
"output_type": "execute_result"
|
| 207 |
+
}
|
| 208 |
+
],
|
| 209 |
+
"source": [
|
| 210 |
+
"samples = tokenized_datasets[\"train\"][:8]\n",
|
| 211 |
+
"samples = {k: v for k, v in samples.items() if k not in [\"idx\", \"sentence1\", \"sentence2\"]}\n",
|
| 212 |
+
"[len(x) for x in samples[\"input_ids\"]]"
|
| 213 |
+
]
|
| 214 |
+
},
|
| 215 |
+
{
|
| 216 |
+
"cell_type": "code",
|
| 217 |
+
"execution_count": 37,
|
| 218 |
+
"metadata": {
|
| 219 |
+
"scrolled": true
|
| 220 |
+
},
|
| 221 |
+
"outputs": [
|
| 222 |
+
{
|
| 223 |
+
"data": {
|
| 224 |
+
"text/plain": [
|
| 225 |
+
"{'attention_mask': torch.Size([8, 67]),\n",
|
| 226 |
+
" 'input_ids': torch.Size([8, 67]),\n",
|
| 227 |
+
" 'token_type_ids': torch.Size([8, 67]),\n",
|
| 228 |
+
" 'labels': torch.Size([8])}"
|
| 229 |
+
]
|
| 230 |
+
},
|
| 231 |
+
"execution_count": 37,
|
| 232 |
+
"metadata": {},
|
| 233 |
+
"output_type": "execute_result"
|
| 234 |
+
}
|
| 235 |
+
],
|
| 236 |
+
"source": [
|
| 237 |
+
"batch = data_collator(samples)\n",
|
| 238 |
+
"{k: v.shape for k, v in batch.items()}"
|
| 239 |
+
]
|
| 240 |
+
},
|
| 241 |
+
{
|
| 242 |
+
"cell_type": "markdown",
|
| 243 |
+
"metadata": {},
|
| 244 |
+
"source": [
|
| 245 |
+
"## Challenge 1"
|
| 246 |
+
]
|
| 247 |
+
},
|
| 248 |
+
{
|
| 249 |
+
"cell_type": "code",
|
| 250 |
+
"execution_count": 15,
|
| 251 |
+
"metadata": {},
|
| 252 |
+
"outputs": [],
|
| 253 |
+
"source": [
|
| 254 |
+
"from torch.utils.data import DataLoader"
|
| 255 |
+
]
|
| 256 |
+
},
|
| 257 |
+
{
|
| 258 |
+
"cell_type": "code",
|
| 259 |
+
"execution_count": 12,
|
| 260 |
+
"metadata": {},
|
| 261 |
+
"outputs": [],
|
| 262 |
+
"source": [
|
| 263 |
+
"samples = tokenized_datasets['test'][:8]\n",
|
| 264 |
+
"samples = {k: samples[k] for k in list(samples.keys()) if k not in [\"idx\", \"sentence1\", \"sentence2\"]}"
|
| 265 |
+
]
|
| 266 |
+
},
|
| 267 |
+
{
|
| 268 |
+
"cell_type": "code",
|
| 269 |
+
"execution_count": 13,
|
| 270 |
+
"metadata": {},
|
| 271 |
+
"outputs": [],
|
| 272 |
+
"source": [
|
| 273 |
+
"padded_samples = data_collator(samples)"
|
| 274 |
+
]
|
| 275 |
+
},
|
| 276 |
+
{
|
| 277 |
+
"cell_type": "code",
|
| 278 |
+
"execution_count": 21,
|
| 279 |
+
"metadata": {},
|
| 280 |
+
"outputs": [],
|
| 281 |
+
"source": [
|
| 282 |
+
"\n",
|
| 283 |
+
"train_dataloader = DataLoader(tokenized_datasets['test'], batch_size=16, shuffle=True, collate_fn=data_collator)\n",
|
| 284 |
+
"for batch in train_dataloader:\n",
|
| 285 |
+
" print(batch['input_ids'].shape())"
|
| 286 |
+
]
|
| 287 |
+
},
|
| 288 |
+
{
|
| 289 |
+
"cell_type": "markdown",
|
| 290 |
+
"metadata": {},
|
| 291 |
+
"source": [
|
| 292 |
+
"## Challenge 2"
|
| 293 |
+
]
|
| 294 |
+
},
|
| 295 |
+
{
|
| 296 |
+
"cell_type": "code",
|
| 297 |
+
"execution_count": 5,
|
| 298 |
+
"metadata": {},
|
| 299 |
+
"outputs": [
|
| 300 |
+
{
|
| 301 |
+
"name": "stderr",
|
| 302 |
+
"output_type": "stream",
|
| 303 |
+
"text": [
|
| 304 |
+
"Reusing dataset glue (C:\\Users\\1seba\\.cache\\huggingface\\datasets\\glue\\sst2\\1.0.0\\dacbe3125aa31d7f70367a07a8a9e72a5a0bfeb5fc42e75c9db75b96da6053ad)\n"
|
| 305 |
+
]
|
| 306 |
+
}
|
| 307 |
+
],
|
| 308 |
+
"source": [
|
| 309 |
+
"raw_dataset_sst2 = load_dataset(\"glue\",\"sst2\")"
|
| 310 |
+
]
|
| 311 |
+
},
|
| 312 |
+
{
|
| 313 |
+
"cell_type": "code",
|
| 314 |
+
"execution_count": 6,
|
| 315 |
+
"metadata": {},
|
| 316 |
+
"outputs": [
|
| 317 |
+
{
|
| 318 |
+
"name": "stderr",
|
| 319 |
+
"output_type": "stream",
|
| 320 |
+
"text": [
|
| 321 |
+
"100%|ββββββββββ| 68/68 [00:03<00:00, 18.46ba/s]\n",
|
| 322 |
+
"100%|ββββββββββ| 1/1 [00:00<00:00, 16.67ba/s]\n",
|
| 323 |
+
"100%|ββββββββββ| 2/2 [00:00<00:00, 16.67ba/s]\n"
|
| 324 |
+
]
|
| 325 |
+
}
|
| 326 |
+
],
|
| 327 |
+
"source": [
|
| 328 |
+
"dataset_to_tokenize = raw_dataset_sst2\n",
|
| 329 |
+
"def tokenize_dynamic(example):\n",
|
| 330 |
+
" dynamic_sentence_list = [x for x in list(example.keys()) if x not in ['label', 'idx']]\n",
|
| 331 |
+
" if len(dynamic_sentence_list) == 1:\n",
|
| 332 |
+
" return tokenizer(example[dynamic_sentence_list[0]], truncation=True)\n",
|
| 333 |
+
" else:\n",
|
| 334 |
+
" return tokenizer(example[dynamic_sentence_list[0]], example[dynamic_sentence_list[1]], truncation=True)\n",
|
| 335 |
+
"tokenized_datasets = dataset_to_tokenize.map(tokenize_dynamic, batched=True)"
|
| 336 |
+
]
|
| 337 |
+
},
|
| 338 |
+
{
|
| 339 |
+
"cell_type": "code",
|
| 340 |
+
"execution_count": 7,
|
| 341 |
+
"metadata": {},
|
| 342 |
+
"outputs": [],
|
| 343 |
+
"source": [
|
| 344 |
+
"samples = tokenized_datasets['train'][:8]\n",
|
| 345 |
+
"samples = {k: samples[k] for k in list(samples.keys()) if k not in [\"idx\", \"sentence\", \"sentence1\", \"sentence2\"]}"
|
| 346 |
+
]
|
| 347 |
+
},
|
| 348 |
+
{
|
| 349 |
+
"cell_type": "code",
|
| 350 |
+
"execution_count": 8,
|
| 351 |
+
"metadata": {},
|
| 352 |
+
"outputs": [],
|
| 353 |
+
"source": [
|
| 354 |
+
"data_collator = DataCollatorWithPadding(tokenizer=tokenizer)"
|
| 355 |
+
]
|
| 356 |
+
},
|
| 357 |
+
{
|
| 358 |
+
"cell_type": "code",
|
| 359 |
+
"execution_count": 74,
|
| 360 |
+
"metadata": {},
|
| 361 |
+
"outputs": [],
|
| 362 |
+
"source": [
|
| 363 |
+
"padded_data = data_collator(samples)"
|
| 364 |
+
]
|
| 365 |
+
},
|
| 366 |
+
{
|
| 367 |
+
"cell_type": "markdown",
|
| 368 |
+
"metadata": {},
|
| 369 |
+
"source": [
|
| 370 |
+
"# Fine-tuning a model with Trainer API"
|
| 371 |
+
]
|
| 372 |
+
},
|
| 373 |
+
{
|
| 374 |
+
"cell_type": "code",
|
| 375 |
+
"execution_count": 33,
|
| 376 |
+
"metadata": {},
|
| 377 |
+
"outputs": [
|
| 378 |
+
{
|
| 379 |
+
"name": "stderr",
|
| 380 |
+
"output_type": "stream",
|
| 381 |
+
"text": [
|
| 382 |
+
"Reusing dataset glue (C:\\Users\\1seba\\.cache\\huggingface\\datasets\\glue\\mrpc\\1.0.0\\dacbe3125aa31d7f70367a07a8a9e72a5a0bfeb5fc42e75c9db75b96da6053ad)\n",
|
| 383 |
+
"100%|ββββββββββ| 4/4 [00:00<00:00, 5.85ba/s]\n",
|
| 384 |
+
"100%|ββββββββββ| 1/1 [00:00<00:00, 14.49ba/s]\n",
|
| 385 |
+
"100%|ββββββββββ| 2/2 [00:00<00:00, 6.37ba/s]\n"
|
| 386 |
+
]
|
| 387 |
+
}
|
| 388 |
+
],
|
| 389 |
+
"source": [
|
| 390 |
+
"# set up so far\n",
|
| 391 |
+
"from datasets import load_dataset\n",
|
| 392 |
+
"from transformers import AutoTokenizer, DataCollatorWithPadding\n",
|
| 393 |
+
"\n",
|
| 394 |
+
"raw_datasets = load_dataset(\"glue\", \"mrpc\")\n",
|
| 395 |
+
"checkpoint = \"bert-base-uncased\"\n",
|
| 396 |
+
"tokenizer = AutoTokenizer.from_pretrained(checkpoint)\n",
|
| 397 |
+
"\n",
|
| 398 |
+
"def tokenize_function(example):\n",
|
| 399 |
+
" return tokenizer(example[\"sentence1\"], example[\"sentence2\"], truncation=True)\n",
|
| 400 |
+
"\n",
|
| 401 |
+
"tokenized_datasets = raw_datasets.map(tokenize_function, batched=True)\n",
|
| 402 |
+
"data_collator = DataCollatorWithPadding(tokenizer=tokenizer)"
|
| 403 |
+
]
|
| 404 |
+
},
|
| 405 |
+
{
|
| 406 |
+
"cell_type": "code",
|
| 407 |
+
"execution_count": 9,
|
| 408 |
+
"metadata": {},
|
| 409 |
+
"outputs": [],
|
| 410 |
+
"source": [
|
| 411 |
+
"from transformers import TrainingArguments\n",
|
| 412 |
+
"from transformers import AutoModelForSequenceClassification"
|
| 413 |
+
]
|
| 414 |
+
},
|
| 415 |
+
{
|
| 416 |
+
"cell_type": "code",
|
| 417 |
+
"execution_count": 34,
|
| 418 |
+
"metadata": {},
|
| 419 |
+
"outputs": [],
|
| 420 |
+
"source": [
|
| 421 |
+
"training_args = TrainingArguments(\"test-trainer\")\n",
|
| 422 |
+
"model = AutoModelForSequenceClassification.from_pretrained(checkpoint, num_labels=2)"
|
| 423 |
+
]
|
| 424 |
+
},
|
| 425 |
+
{
|
| 426 |
+
"cell_type": "code",
|
| 427 |
+
"execution_count": 9,
|
| 428 |
+
"metadata": {},
|
| 429 |
+
"outputs": [],
|
| 430 |
+
"source": []
|
| 431 |
+
},
|
| 432 |
+
{
|
| 433 |
+
"cell_type": "code",
|
| 434 |
+
"execution_count": 37,
|
| 435 |
+
"metadata": {},
|
| 436 |
+
"outputs": [
|
| 437 |
+
{
|
| 438 |
+
"name": "stderr",
|
| 439 |
+
"output_type": "stream",
|
| 440 |
+
"text": [
|
| 441 |
+
"100%|ββββββββββ| 4/4 [00:00<00:00, 4.14ba/s]\n",
|
| 442 |
+
"100%|ββββββββββ| 1/1 [00:00<00:00, 9.71ba/s]\n"
|
| 443 |
+
]
|
| 444 |
+
}
|
| 445 |
+
],
|
| 446 |
+
"source": [
|
| 447 |
+
"train_dataset = tokenized_datasets[\"train\"].filter(percentageOfItems)\n",
|
| 448 |
+
"validation_dataset = tokenized_datasets[\"validation\"].filter(percentageOfItems)"
|
| 449 |
+
]
|
| 450 |
+
},
|
| 451 |
+
{
|
| 452 |
+
"cell_type": "code",
|
| 453 |
+
"execution_count": 42,
|
| 454 |
+
"metadata": {},
|
| 455 |
+
"outputs": [],
|
| 456 |
+
"source": [
|
| 457 |
+
"trainer = Trainer(\n",
|
| 458 |
+
" model,\n",
|
| 459 |
+
" training_args,\n",
|
| 460 |
+
" train_dataset=train_dataset,\n",
|
| 461 |
+
" eval_dataset=validation_dataset,\n",
|
| 462 |
+
" data_collator=data_collator,\n",
|
| 463 |
+
" tokenizer=tokenizer,\n",
|
| 464 |
+
")"
|
| 465 |
+
]
|
| 466 |
+
},
|
| 467 |
+
{
|
| 468 |
+
"cell_type": "code",
|
| 469 |
+
"execution_count": null,
|
| 470 |
+
"metadata": {},
|
| 471 |
+
"outputs": [
|
| 472 |
+
{
|
| 473 |
+
"name": "stderr",
|
| 474 |
+
"output_type": "stream",
|
| 475 |
+
"text": [
|
| 476 |
+
" 0%| | 0/132 [01:31<?, ?it/s]\n",
|
| 477 |
+
"100%|ββββββββββ| 132/132 [00:44<00:00, 2.97it/s]"
|
| 478 |
+
]
|
| 479 |
+
},
|
| 480 |
+
{
|
| 481 |
+
"name": "stdout",
|
| 482 |
+
"output_type": "stream",
|
| 483 |
+
"text": [
|
| 484 |
+
"{'train_runtime': 44.4012, 'train_samples_per_second': 2.973, 'epoch': 3.0}\n"
|
| 485 |
+
]
|
| 486 |
+
},
|
| 487 |
+
{
|
| 488 |
+
"name": "stderr",
|
| 489 |
+
"output_type": "stream",
|
| 490 |
+
"text": [
|
| 491 |
+
"\n"
|
| 492 |
+
]
|
| 493 |
+
},
|
| 494 |
+
{
|
| 495 |
+
"data": {
|
| 496 |
+
"text/plain": [
|
| 497 |
+
"TrainOutput(global_step=132, training_loss=0.4154145789868904, metrics={'train_runtime': 44.4012, 'train_samples_per_second': 2.973, 'epoch': 3.0})"
|
| 498 |
+
]
|
| 499 |
+
},
|
| 500 |
+
"metadata": {},
|
| 501 |
+
"output_type": "display_data"
|
| 502 |
+
}
|
| 503 |
+
],
|
| 504 |
+
"source": [
|
| 505 |
+
"trainer.train()"
|
| 506 |
+
]
|
| 507 |
+
},
|
| 508 |
+
{
|
| 509 |
+
"cell_type": "code",
|
| 510 |
+
"execution_count": 48,
|
| 511 |
+
"metadata": {},
|
| 512 |
+
"outputs": [
|
| 513 |
+
{
|
| 514 |
+
"name": "stderr",
|
| 515 |
+
"output_type": "stream",
|
| 516 |
+
"text": [
|
| 517 |
+
" 80%|ββββββββ | 4/5 [00:00<00:00, 9.37it/s]"
|
| 518 |
+
]
|
| 519 |
+
},
|
| 520 |
+
{
|
| 521 |
+
"name": "stdout",
|
| 522 |
+
"output_type": "stream",
|
| 523 |
+
"text": [
|
| 524 |
+
"(37, 2) (37,)\n"
|
| 525 |
+
]
|
| 526 |
+
}
|
| 527 |
+
],
|
| 528 |
+
"source": [
|
| 529 |
+
"predictions = trainer.predict(validation_dataset)\n",
|
| 530 |
+
"print(predictions.predictions.shape, predictions.label_ids.shape)"
|
| 531 |
+
]
|
| 532 |
+
},
|
| 533 |
+
{
|
| 534 |
+
"cell_type": "code",
|
| 535 |
+
"execution_count": 10,
|
| 536 |
+
"metadata": {},
|
| 537 |
+
"outputs": [],
|
| 538 |
+
"source": [
|
| 539 |
+
"import numpy as np\n",
|
| 540 |
+
"from datasets import load_metric"
|
| 541 |
+
]
|
| 542 |
+
},
|
| 543 |
+
{
|
| 544 |
+
"cell_type": "code",
|
| 545 |
+
"execution_count": 49,
|
| 546 |
+
"metadata": {},
|
| 547 |
+
"outputs": [],
|
| 548 |
+
"source": [
|
| 549 |
+
"preds = np.argmax(predictions.predictions, axis=-1)"
|
| 550 |
+
]
|
| 551 |
+
},
|
| 552 |
+
{
|
| 553 |
+
"cell_type": "code",
|
| 554 |
+
"execution_count": 51,
|
| 555 |
+
"metadata": {},
|
| 556 |
+
"outputs": [
|
| 557 |
+
{
|
| 558 |
+
"data": {
|
| 559 |
+
"text/plain": [
|
| 560 |
+
"{'accuracy': 0.8378378378378378, 'f1': 0.8928571428571429}"
|
| 561 |
+
]
|
| 562 |
+
},
|
| 563 |
+
"execution_count": 51,
|
| 564 |
+
"metadata": {},
|
| 565 |
+
"output_type": "execute_result"
|
| 566 |
+
}
|
| 567 |
+
],
|
| 568 |
+
"source": [
|
| 569 |
+
"metric = load_metric(\"glue\", \"mrpc\")\n",
|
| 570 |
+
"metric.compute(predictions=preds, references=predictions.label_ids)"
|
| 571 |
+
]
|
| 572 |
+
},
|
| 573 |
+
{
|
| 574 |
+
"cell_type": "code",
|
| 575 |
+
"execution_count": 52,
|
| 576 |
+
"metadata": {},
|
| 577 |
+
"outputs": [],
|
| 578 |
+
"source": [
|
| 579 |
+
"def compute_metrics(eval_preds):\n",
|
| 580 |
+
" metric = load_metric(\"glue\", \"mrpc\")\n",
|
| 581 |
+
" logits, labels = eval_preds\n",
|
| 582 |
+
" predictions = np.argmax(logits, axis=-1)\n",
|
| 583 |
+
" return metric.compute(predictions=predictions, references=labels)"
|
| 584 |
+
]
|
| 585 |
+
},
|
| 586 |
+
{
|
| 587 |
+
"cell_type": "code",
|
| 588 |
+
"execution_count": 62,
|
| 589 |
+
"metadata": {},
|
| 590 |
+
"outputs": [
|
| 591 |
+
{
|
| 592 |
+
"name": "stderr",
|
| 593 |
+
"output_type": "stream",
|
| 594 |
+
"text": [
|
| 595 |
+
"Some weights of the model checkpoint at bert-base-uncased were not used when initializing BertForSequenceClassification: ['cls.predictions.transform.dense.bias', 'cls.predictions.decoder.weight', 'cls.predictions.bias', 'cls.seq_relationship.bias', 'cls.seq_relationship.weight', 'cls.predictions.transform.LayerNorm.weight', 'cls.predictions.transform.LayerNorm.bias', 'cls.predictions.transform.dense.weight']\n",
|
| 596 |
+
"- This IS expected if you are initializing BertForSequenceClassification from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n",
|
| 597 |
+
"- This IS NOT expected if you are initializing BertForSequenceClassification from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n",
|
| 598 |
+
"Some weights of BertForSequenceClassification were not initialized from the model checkpoint at bert-base-uncased and are newly initialized: ['classifier.weight', 'classifier.bias']\n",
|
| 599 |
+
"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n"
|
| 600 |
+
]
|
| 601 |
+
}
|
| 602 |
+
],
|
| 603 |
+
"source": [
|
| 604 |
+
"training_args = TrainingArguments(\"test-trainer\", evaluation_strategy=\"epoch\")\n",
|
| 605 |
+
"model = AutoModelForSequenceClassification.from_pretrained(checkpoint, num_labels=2)\n",
|
| 606 |
+
"\n",
|
| 607 |
+
"trainer = Trainer(\n",
|
| 608 |
+
" model,\n",
|
| 609 |
+
" training_args,\n",
|
| 610 |
+
" train_dataset=train_dataset,\n",
|
| 611 |
+
" eval_dataset=validation_dataset,\n",
|
| 612 |
+
" data_collator=data_collator,\n",
|
| 613 |
+
" tokenizer=tokenizer,\n",
|
| 614 |
+
" compute_metrics=compute_metrics\n",
|
| 615 |
+
")"
|
| 616 |
+
]
|
| 617 |
+
},
|
| 618 |
+
{
|
| 619 |
+
"cell_type": "code",
|
| 620 |
+
"execution_count": 66,
|
| 621 |
+
"metadata": {},
|
| 622 |
+
"outputs": [
|
| 623 |
+
{
|
| 624 |
+
"name": "stderr",
|
| 625 |
+
"output_type": "stream",
|
| 626 |
+
"text": [
|
| 627 |
+
" 1%| | 1/132 [00:19<43:22, 19.87s/it]\n",
|
| 628 |
+
"100%|ββββββββββ| 5/5 [00:00<00:00, 17.23it/s]\n"
|
| 629 |
+
]
|
| 630 |
+
},
|
| 631 |
+
{
|
| 632 |
+
"name": "stdout",
|
| 633 |
+
"output_type": "stream",
|
| 634 |
+
"text": [
|
| 635 |
+
"{'eval_loss': 0.5742557048797607, 'eval_accuracy': 0.7027027027027027, 'eval_f1': 0.8070175438596492, 'eval_runtime': 0.9927, 'eval_samples_per_second': 37.273, 'epoch': 1.0}\n"
|
| 636 |
+
]
|
| 637 |
+
},
|
| 638 |
+
{
|
| 639 |
+
"name": "stderr",
|
| 640 |
+
"output_type": "stream",
|
| 641 |
+
"text": [
|
| 642 |
+
"100%|ββββββββββ| 5/5 [00:00<00:00, 17.03it/s]\n"
|
| 643 |
+
]
|
| 644 |
+
},
|
| 645 |
+
{
|
| 646 |
+
"name": "stdout",
|
| 647 |
+
"output_type": "stream",
|
| 648 |
+
"text": [
|
| 649 |
+
"{'eval_loss': 0.4739842414855957, 'eval_accuracy': 0.7837837837837838, 'eval_f1': 0.8620689655172413, 'eval_runtime': 0.9255, 'eval_samples_per_second': 39.977, 'epoch': 2.0}\n"
|
| 650 |
+
]
|
| 651 |
+
},
|
| 652 |
+
{
|
| 653 |
+
"name": "stderr",
|
| 654 |
+
"output_type": "stream",
|
| 655 |
+
"text": [
|
| 656 |
+
"100%|ββββββββββ| 5/5 [00:00<00:00, 16.95it/s]\n",
|
| 657 |
+
" \n",
|
| 658 |
+
"100%|ββββββββββ| 132/132 [00:46<00:00, 2.81it/s]"
|
| 659 |
+
]
|
| 660 |
+
},
|
| 661 |
+
{
|
| 662 |
+
"name": "stdout",
|
| 663 |
+
"output_type": "stream",
|
| 664 |
+
"text": [
|
| 665 |
+
"{'eval_loss': 0.5759992599487305, 'eval_accuracy': 0.7567567567567568, 'eval_f1': 0.8474576271186441, 'eval_runtime': 0.8269, 'eval_samples_per_second': 44.745, 'epoch': 3.0}\n",
|
| 666 |
+
"{'train_runtime': 46.927, 'train_samples_per_second': 2.813, 'epoch': 3.0}\n"
|
| 667 |
+
]
|
| 668 |
+
},
|
| 669 |
+
{
|
| 670 |
+
"name": "stderr",
|
| 671 |
+
"output_type": "stream",
|
| 672 |
+
"text": [
|
| 673 |
+
"\n"
|
| 674 |
+
]
|
| 675 |
+
},
|
| 676 |
+
{
|
| 677 |
+
"data": {
|
| 678 |
+
"text/plain": [
|
| 679 |
+
"TrainOutput(global_step=132, training_loss=0.39838010614568536, metrics={'train_runtime': 46.927, 'train_samples_per_second': 2.813, 'epoch': 3.0})"
|
| 680 |
+
]
|
| 681 |
+
},
|
| 682 |
+
"execution_count": 66,
|
| 683 |
+
"metadata": {},
|
| 684 |
+
"output_type": "execute_result"
|
| 685 |
+
}
|
| 686 |
+
],
|
| 687 |
+
"source": [
|
| 688 |
+
"trainer.train()"
|
| 689 |
+
]
|
| 690 |
+
},
|
| 691 |
+
{
|
| 692 |
+
"cell_type": "markdown",
|
| 693 |
+
"metadata": {},
|
| 694 |
+
"source": [
|
| 695 |
+
"## Challenge 3"
|
| 696 |
+
]
|
| 697 |
+
},
|
| 698 |
+
{
|
| 699 |
+
"cell_type": "code",
|
| 700 |
+
"execution_count": 13,
|
| 701 |
+
"metadata": {},
|
| 702 |
+
"outputs": [
|
| 703 |
+
{
|
| 704 |
+
"name": "stderr",
|
| 705 |
+
"output_type": "stream",
|
| 706 |
+
"text": [
|
| 707 |
+
"100%|ββββββββββ| 2/2 [00:00<00:00, 7.19ba/s]\n"
|
| 708 |
+
]
|
| 709 |
+
}
|
| 710 |
+
],
|
| 711 |
+
"source": [
|
| 712 |
+
"# FILTER BREAKS THE LABELS ON THIS DATASET\n",
|
| 713 |
+
"a = tokenized_datasets['test'].filter(lambda example, index: index % 2 == 0, with_indices=True)"
|
| 714 |
+
]
|
| 715 |
+
},
|
| 716 |
+
{
|
| 717 |
+
"cell_type": "code",
|
| 718 |
+
"execution_count": 21,
|
| 719 |
+
"metadata": {},
|
| 720 |
+
"outputs": [
|
| 721 |
+
{
|
| 722 |
+
"name": "stderr",
|
| 723 |
+
"output_type": "stream",
|
| 724 |
+
"text": [
|
| 725 |
+
"Some weights of the model checkpoint at bert-base-uncased were not used when initializing BertForSequenceClassification: ['cls.predictions.decoder.weight', 'cls.predictions.transform.dense.bias', 'cls.seq_relationship.bias', 'cls.predictions.transform.LayerNorm.bias', 'cls.predictions.transform.dense.weight', 'cls.predictions.bias', 'cls.seq_relationship.weight', 'cls.predictions.transform.LayerNorm.weight']\n",
|
| 726 |
+
"- This IS expected if you are initializing BertForSequenceClassification from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n",
|
| 727 |
+
"- This IS NOT expected if you are initializing BertForSequenceClassification from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n",
|
| 728 |
+
"Some weights of BertForSequenceClassification were not initialized from the model checkpoint at bert-base-uncased and are newly initialized: ['classifier.weight', 'classifier.bias']\n",
|
| 729 |
+
"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n"
|
| 730 |
+
]
|
| 731 |
+
}
|
| 732 |
+
],
|
| 733 |
+
"source": [
|
| 734 |
+
"# use \"tokenized_datasets\" from challenge 2\n",
|
| 735 |
+
"checkpoint = \"bert-base-uncased\"\n",
|
| 736 |
+
"tokenizer = AutoTokenizer.from_pretrained(checkpoint)\n",
|
| 737 |
+
"model = AutoModelForSequenceClassification.from_pretrained(checkpoint, num_labels=2)\n",
|
| 738 |
+
"data_collator = DataCollatorWithPadding(tokenizer=tokenizer)\n",
|
| 739 |
+
"training_args = TrainingArguments('test-trainer', evaluation_strategy='epoch')\n",
|
| 740 |
+
"train_shard = tokenized_datasets['train'].shard(num_shards=150, index=0)\n",
|
| 741 |
+
"validation_shard = tokenized_datasets['validation'].shard(num_shards=4, index=0)\n",
|
| 742 |
+
"metric_sst2 = load_metric('glue', 'sst2')\n",
|
| 743 |
+
"\n",
|
| 744 |
+
"# def compute_metrics(eval_preds):\n",
|
| 745 |
+
"# metric = load_metric(\"glue\", \"mrpc\")\n",
|
| 746 |
+
"# logits, labels = eval_preds\n",
|
| 747 |
+
"# predictions = np.argmax(logits, axis=-1)\n",
|
| 748 |
+
"# return metric.compute(predictions=predictions, references=labels)\n",
|
| 749 |
+
"def compute_metrics (eval_preds):\n",
|
| 750 |
+
" metric_sst2 = load_metric('glue', 'sst2')\n",
|
| 751 |
+
" logits, labels = eval_preds\n",
|
| 752 |
+
" predictions = np.argmax(logits, axis=-1)\n",
|
| 753 |
+
" return metric_sst2.compute(predictions=predictions, references=labels)\n",
|
| 754 |
+
"\n",
|
| 755 |
+
"trainer = Trainer(\n",
|
| 756 |
+
" model,\n",
|
| 757 |
+
" training_args,\n",
|
| 758 |
+
" train_dataset=train_shard,\n",
|
| 759 |
+
" eval_dataset=validation_shard,\n",
|
| 760 |
+
" data_collator=data_collator,\n",
|
| 761 |
+
" tokenizer=tokenizer,\n",
|
| 762 |
+
" compute_metrics=compute_metrics\n",
|
| 763 |
+
")"
|
| 764 |
+
]
|
| 765 |
+
},
|
| 766 |
+
{
|
| 767 |
+
"cell_type": "code",
|
| 768 |
+
"execution_count": 22,
|
| 769 |
+
"metadata": {},
|
| 770 |
+
"outputs": [
|
| 771 |
+
{
|
| 772 |
+
"name": "stderr",
|
| 773 |
+
"output_type": "stream",
|
| 774 |
+
"text": [
|
| 775 |
+
"\n",
|
| 776 |
+
" 33%|ββββ | 57/171 [00:35<00:58, 1.94it/s]"
|
| 777 |
+
]
|
| 778 |
+
},
|
| 779 |
+
{
|
| 780 |
+
"name": "stdout",
|
| 781 |
+
"output_type": "stream",
|
| 782 |
+
"text": [
|
| 783 |
+
"{'eval_loss': 0.38222888112068176, 'eval_accuracy': 0.8302752293577982, 'eval_runtime': 3.3093, 'eval_samples_per_second': 65.875, 'epoch': 1.0}\n"
|
| 784 |
+
]
|
| 785 |
+
},
|
| 786 |
+
{
|
| 787 |
+
"name": "stderr",
|
| 788 |
+
"output_type": "stream",
|
| 789 |
+
"text": [
|
| 790 |
+
"\n",
|
| 791 |
+
" 67%|βββββββ | 114/171 [01:09<00:29, 1.93it/s]"
|
| 792 |
+
]
|
| 793 |
+
},
|
| 794 |
+
{
|
| 795 |
+
"name": "stdout",
|
| 796 |
+
"output_type": "stream",
|
| 797 |
+
"text": [
|
| 798 |
+
"{'eval_loss': 0.7558169364929199, 'eval_accuracy': 0.8165137614678899, 'eval_runtime': 3.5593, 'eval_samples_per_second': 61.248, 'epoch': 2.0}\n"
|
| 799 |
+
]
|
| 800 |
+
},
|
| 801 |
+
{
|
| 802 |
+
"name": "stderr",
|
| 803 |
+
"output_type": "stream",
|
| 804 |
+
"text": [
|
| 805 |
+
"\n",
|
| 806 |
+
"100%|ββββββββββ| 171/171 [01:42<00:00, 1.66it/s]"
|
| 807 |
+
]
|
| 808 |
+
},
|
| 809 |
+
{
|
| 810 |
+
"name": "stdout",
|
| 811 |
+
"output_type": "stream",
|
| 812 |
+
"text": [
|
| 813 |
+
"{'eval_loss': 0.5612818598747253, 'eval_accuracy': 0.8669724770642202, 'eval_runtime': 3.3543, 'eval_samples_per_second': 64.991, 'epoch': 3.0}\n",
|
| 814 |
+
"{'train_runtime': 102.7742, 'train_samples_per_second': 1.664, 'epoch': 3.0}\n"
|
| 815 |
+
]
|
| 816 |
+
},
|
| 817 |
+
{
|
| 818 |
+
"name": "stderr",
|
| 819 |
+
"output_type": "stream",
|
| 820 |
+
"text": [
|
| 821 |
+
"\n"
|
| 822 |
+
]
|
| 823 |
+
},
|
| 824 |
+
{
|
| 825 |
+
"data": {
|
| 826 |
+
"text/plain": [
|
| 827 |
+
"TrainOutput(global_step=171, training_loss=0.276075485854121, metrics={'train_runtime': 102.7742, 'train_samples_per_second': 1.664, 'epoch': 3.0})"
|
| 828 |
+
]
|
| 829 |
+
},
|
| 830 |
+
"execution_count": 22,
|
| 831 |
+
"metadata": {},
|
| 832 |
+
"output_type": "execute_result"
|
| 833 |
+
}
|
| 834 |
+
],
|
| 835 |
+
"source": [
|
| 836 |
+
"trainer.train()"
|
| 837 |
+
]
|
| 838 |
+
},
|
| 839 |
+
{
|
| 840 |
+
"cell_type": "markdown",
|
| 841 |
+
"metadata": {},
|
| 842 |
+
"source": [
|
| 843 |
+
"# A Full Training"
|
| 844 |
+
]
|
| 845 |
+
},
|
| 846 |
+
{
|
| 847 |
+
"cell_type": "code",
|
| 848 |
+
"execution_count": 5,
|
| 849 |
+
"metadata": {},
|
| 850 |
+
"outputs": [
|
| 851 |
+
{
|
| 852 |
+
"name": "stderr",
|
| 853 |
+
"output_type": "stream",
|
| 854 |
+
"text": [
|
| 855 |
+
"Reusing dataset glue (C:\\Users\\1seba\\.cache\\huggingface\\datasets\\glue\\mrpc\\1.0.0\\dacbe3125aa31d7f70367a07a8a9e72a5a0bfeb5fc42e75c9db75b96da6053ad)\n",
|
| 856 |
+
"100%|ββββββββββ| 4/4 [00:00<00:00, 7.09ba/s]\n",
|
| 857 |
+
"100%|ββββββββββ| 1/1 [00:00<00:00, 16.39ba/s]\n",
|
| 858 |
+
"100%|ββββββββββ| 2/2 [00:00<00:00, 9.01ba/s]\n"
|
| 859 |
+
]
|
| 860 |
+
}
|
| 861 |
+
],
|
| 862 |
+
"source": [
|
| 863 |
+
"# setup\n",
|
| 864 |
+
"from datasets import load_dataset\n",
|
| 865 |
+
"from transformers import AutoTokenizer, DataCollatorWithPadding\n",
|
| 866 |
+
"\n",
|
| 867 |
+
"raw_datasets = load_dataset(\"glue\", \"mrpc\")\n",
|
| 868 |
+
"checkpoint = \"bert-base-uncased\"\n",
|
| 869 |
+
"tokenizer = AutoTokenizer.from_pretrained(checkpoint)\n",
|
| 870 |
+
"def tokenize_function(example):\n",
|
| 871 |
+
" return tokenizer(example[\"sentence1\"], example[\"sentence2\"], truncation=True)\n",
|
| 872 |
+
"tokenized_datasets = raw_datasets.map(tokenize_function, batched=True)\n",
|
| 873 |
+
"data_collator = DataCollatorWithPadding(tokenizer=tokenizer)"
|
| 874 |
+
]
|
| 875 |
+
},
|
| 876 |
+
{
|
| 877 |
+
"cell_type": "code",
|
| 878 |
+
"execution_count": 6,
|
| 879 |
+
"metadata": {},
|
| 880 |
+
"outputs": [
|
| 881 |
+
{
|
| 882 |
+
"data": {
|
| 883 |
+
"text/plain": [
|
| 884 |
+
"['attention_mask', 'input_ids', 'labels', 'token_type_ids']"
|
| 885 |
+
]
|
| 886 |
+
},
|
| 887 |
+
"execution_count": 6,
|
| 888 |
+
"metadata": {},
|
| 889 |
+
"output_type": "execute_result"
|
| 890 |
+
}
|
| 891 |
+
],
|
| 892 |
+
"source": [
|
| 893 |
+
"tokenized_datasets = tokenized_datasets.remove_columns([\"idx\", \"sentence1\", \"sentence2\"])\n",
|
| 894 |
+
"tokenized_datasets = tokenized_datasets.rename_column('label', 'labels')\n",
|
| 895 |
+
"tokenized_datasets.set_format('torch')\n",
|
| 896 |
+
"tokenized_datasets['train'].column_names"
|
| 897 |
+
]
|
| 898 |
+
},
|
| 899 |
+
{
|
| 900 |
+
"cell_type": "code",
|
| 901 |
+
"execution_count": 7,
|
| 902 |
+
"metadata": {},
|
| 903 |
+
"outputs": [],
|
| 904 |
+
"source": [
|
| 905 |
+
"from torch.utils.data import DataLoader\n",
|
| 906 |
+
"train_dataloader = DataLoader(\n",
|
| 907 |
+
" tokenized_datasets['train'].shard(num_shards=15, index=0), shuffle=True, batch_size=8, collate_fn=data_collator\n",
|
| 908 |
+
")\n",
|
| 909 |
+
"eval_dataloader = DataLoader(\n",
|
| 910 |
+
" tokenized_datasets['validation'].shard(num_shards=5, index=0), batch_size=8, collate_fn=data_collator\n",
|
| 911 |
+
")"
|
| 912 |
+
]
|
| 913 |
+
},
|
| 914 |
+
{
|
| 915 |
+
"cell_type": "code",
|
| 916 |
+
"execution_count": 60,
|
| 917 |
+
"metadata": {},
|
| 918 |
+
"outputs": [
|
| 919 |
+
{
|
| 920 |
+
"data": {
|
| 921 |
+
"text/plain": [
|
| 922 |
+
"{'attention_mask': torch.Size([8, 64]),\n",
|
| 923 |
+
" 'input_ids': torch.Size([8, 64]),\n",
|
| 924 |
+
" 'labels': torch.Size([8]),\n",
|
| 925 |
+
" 'token_type_ids': torch.Size([8, 64])}"
|
| 926 |
+
]
|
| 927 |
+
},
|
| 928 |
+
"execution_count": 60,
|
| 929 |
+
"metadata": {},
|
| 930 |
+
"output_type": "execute_result"
|
| 931 |
+
}
|
| 932 |
+
],
|
| 933 |
+
"source": [
|
| 934 |
+
"for batch in train_dataloader:\n",
|
| 935 |
+
" break\n",
|
| 936 |
+
"{k: v.shape for k, v in batch.items()}"
|
| 937 |
+
]
|
| 938 |
+
},
|
| 939 |
+
{
|
| 940 |
+
"cell_type": "code",
|
| 941 |
+
"execution_count": 61,
|
| 942 |
+
"metadata": {},
|
| 943 |
+
"outputs": [
|
| 944 |
+
{
|
| 945 |
+
"name": "stderr",
|
| 946 |
+
"output_type": "stream",
|
| 947 |
+
"text": [
|
| 948 |
+
"Some weights of the model checkpoint at bert-base-uncased were not used when initializing BertForSequenceClassification: ['cls.seq_relationship.weight', 'cls.predictions.bias', 'cls.predictions.transform.LayerNorm.weight', 'cls.seq_relationship.bias', 'cls.predictions.transform.dense.bias', 'cls.predictions.transform.LayerNorm.bias', 'cls.predictions.transform.dense.weight', 'cls.predictions.decoder.weight']\n",
|
| 949 |
+
"- This IS expected if you are initializing BertForSequenceClassification from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n",
|
| 950 |
+
"- This IS NOT expected if you are initializing BertForSequenceClassification from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n",
|
| 951 |
+
"Some weights of BertForSequenceClassification were not initialized from the model checkpoint at bert-base-uncased and are newly initialized: ['classifier.bias', 'classifier.weight']\n",
|
| 952 |
+
"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n"
|
| 953 |
+
]
|
| 954 |
+
}
|
| 955 |
+
],
|
| 956 |
+
"source": [
|
| 957 |
+
"from transformers import AutoModelForSequenceClassification\n",
|
| 958 |
+
"model = AutoModelForSequenceClassification.from_pretrained(checkpoint, num_labels=2)"
|
| 959 |
+
]
|
| 960 |
+
},
|
| 961 |
+
{
|
| 962 |
+
"cell_type": "code",
|
| 963 |
+
"execution_count": 62,
|
| 964 |
+
"metadata": {},
|
| 965 |
+
"outputs": [
|
| 966 |
+
{
|
| 967 |
+
"name": "stdout",
|
| 968 |
+
"output_type": "stream",
|
| 969 |
+
"text": [
|
| 970 |
+
"tensor(0.5705, grad_fn=<NllLossBackward>) torch.Size([8, 2])\n"
|
| 971 |
+
]
|
| 972 |
+
}
|
| 973 |
+
],
|
| 974 |
+
"source": [
|
| 975 |
+
"outputs = model(**batch)\n",
|
| 976 |
+
"print(outputs.loss, outputs.logits.shape)"
|
| 977 |
+
]
|
| 978 |
+
},
|
| 979 |
+
{
|
| 980 |
+
"cell_type": "code",
|
| 981 |
+
"execution_count": 63,
|
| 982 |
+
"metadata": {},
|
| 983 |
+
"outputs": [],
|
| 984 |
+
"source": [
|
| 985 |
+
"from transformers import AdamW\n",
|
| 986 |
+
"optimizer = AdamW(model.parameters(), lr=5e-5)"
|
| 987 |
+
]
|
| 988 |
+
},
|
| 989 |
+
{
|
| 990 |
+
"cell_type": "code",
|
| 991 |
+
"execution_count": 64,
|
| 992 |
+
"metadata": {},
|
| 993 |
+
"outputs": [
|
| 994 |
+
{
|
| 995 |
+
"name": "stdout",
|
| 996 |
+
"output_type": "stream",
|
| 997 |
+
"text": [
|
| 998 |
+
"93\n"
|
| 999 |
+
]
|
| 1000 |
+
}
|
| 1001 |
+
],
|
| 1002 |
+
"source": [
|
| 1003 |
+
"from transformers import get_scheduler\n",
|
| 1004 |
+
"num_epochs = 3\n",
|
| 1005 |
+
"num_training_steps = num_epochs * len(train_dataloader)\n",
|
| 1006 |
+
"lr_scheduler = get_scheduler(\n",
|
| 1007 |
+
" 'linear',\n",
|
| 1008 |
+
" optimizer,\n",
|
| 1009 |
+
" num_warmup_steps=0,\n",
|
| 1010 |
+
" num_training_steps=num_training_steps,\n",
|
| 1011 |
+
")\n",
|
| 1012 |
+
"print(num_training_steps)\n"
|
| 1013 |
+
]
|
| 1014 |
+
},
|
| 1015 |
+
{
|
| 1016 |
+
"cell_type": "code",
|
| 1017 |
+
"execution_count": 65,
|
| 1018 |
+
"metadata": {},
|
| 1019 |
+
"outputs": [
|
| 1020 |
+
{
|
| 1021 |
+
"data": {
|
| 1022 |
+
"text/plain": [
|
| 1023 |
+
"device(type='cuda')"
|
| 1024 |
+
]
|
| 1025 |
+
},
|
| 1026 |
+
"execution_count": 65,
|
| 1027 |
+
"metadata": {},
|
| 1028 |
+
"output_type": "execute_result"
|
| 1029 |
+
}
|
| 1030 |
+
],
|
| 1031 |
+
"source": [
|
| 1032 |
+
"import torch\n",
|
| 1033 |
+
"device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')\n",
|
| 1034 |
+
"model.to(device)\n",
|
| 1035 |
+
"device"
|
| 1036 |
+
]
|
| 1037 |
+
},
|
| 1038 |
+
{
|
| 1039 |
+
"cell_type": "code",
|
| 1040 |
+
"execution_count": 71,
|
| 1041 |
+
"metadata": {},
|
| 1042 |
+
"outputs": [
|
| 1043 |
+
{
|
| 1044 |
+
"name": "stderr",
|
| 1045 |
+
"output_type": "stream",
|
| 1046 |
+
"text": [
|
| 1047 |
+
"100%|ββββββββββ| 93/93 [08:50<00:00, 5.70s/it]\n",
|
| 1048 |
+
"100%|ββββββββββ| 93/93 [00:28<00:00, 3.21it/s]"
|
| 1049 |
+
]
|
| 1050 |
+
}
|
| 1051 |
+
],
|
| 1052 |
+
"source": [
|
| 1053 |
+
"from tqdm.auto import tqdm\n",
|
| 1054 |
+
"progress_bar = tqdm(range(num_training_steps))\n",
|
| 1055 |
+
"model.train()\n",
|
| 1056 |
+
"for epoch in range(num_epochs):\n",
|
| 1057 |
+
" for batch in train_dataloader:\n",
|
| 1058 |
+
" batch = {k: v.to(device) for k, v in batch.items()}\n",
|
| 1059 |
+
" outputs = model(**batch)\n",
|
| 1060 |
+
" loss = outputs.loss\n",
|
| 1061 |
+
" loss.backward()\n",
|
| 1062 |
+
" optimizer.step()\n",
|
| 1063 |
+
" optimizer.zero_grad()\n",
|
| 1064 |
+
" progress_bar.update(1)\n",
|
| 1065 |
+
" \n",
|
| 1066 |
+
" # metric = load_metric('glue', 'mrpc')\n",
|
| 1067 |
+
" # model.eval()\n",
|
| 1068 |
+
" # for batch in eval_dataloader:\n",
|
| 1069 |
+
" # batch = {k: v.to(device) for k, v in batch.items()}\n",
|
| 1070 |
+
" # with torch.no_grad():\n",
|
| 1071 |
+
" # outputs = model(**batch)\n",
|
| 1072 |
+
" # logits = outputs.logits\n",
|
| 1073 |
+
" # predictions = torch.argmax(logits, dim=-1)\n",
|
| 1074 |
+
" # metric.add_batch(predictions=predictions, references=batch['labels'])\n",
|
| 1075 |
+
" # print(metric.compute())"
|
| 1076 |
+
]
|
| 1077 |
+
},
|
| 1078 |
+
{
|
| 1079 |
+
"cell_type": "code",
|
| 1080 |
+
"execution_count": 109,
|
| 1081 |
+
"metadata": {},
|
| 1082 |
+
"outputs": [
|
| 1083 |
+
{
|
| 1084 |
+
"data": {
|
| 1085 |
+
"text/plain": [
|
| 1086 |
+
"{'accuracy': 0.6463414634146342, 'f1': 0.7851851851851851}"
|
| 1087 |
+
]
|
| 1088 |
+
},
|
| 1089 |
+
"execution_count": 109,
|
| 1090 |
+
"metadata": {},
|
| 1091 |
+
"output_type": "execute_result"
|
| 1092 |
+
}
|
| 1093 |
+
],
|
| 1094 |
+
"source": [
|
| 1095 |
+
"from datasets import load_metric\n",
|
| 1096 |
+
"metric = load_metric('glue', 'mrpc')\n",
|
| 1097 |
+
"model.eval()\n",
|
| 1098 |
+
"for batch in eval_dataloader:\n",
|
| 1099 |
+
" batch = {k: v.to(device) for k, v in batch.items()}\n",
|
| 1100 |
+
" with torch.no_grad():\n",
|
| 1101 |
+
" outputs = model(**batch)\n",
|
| 1102 |
+
" logits = outputs.logits\n",
|
| 1103 |
+
" predictions = torch.argmax(logits, dim=-1)\n",
|
| 1104 |
+
" metric.add_batch(predictions=predictions, references=batch['labels'])\n",
|
| 1105 |
+
"metric.compute()"
|
| 1106 |
+
]
|
| 1107 |
+
},
|
| 1108 |
+
{
|
| 1109 |
+
"cell_type": "markdown",
|
| 1110 |
+
"metadata": {},
|
| 1111 |
+
"source": [
|
| 1112 |
+
"## Challenge 1"
|
| 1113 |
+
]
|
| 1114 |
+
},
|
| 1115 |
+
{
|
| 1116 |
+
"cell_type": "code",
|
| 1117 |
+
"execution_count": 20,
|
| 1118 |
+
"metadata": {},
|
| 1119 |
+
"outputs": [
|
| 1120 |
+
{
|
| 1121 |
+
"name": "stderr",
|
| 1122 |
+
"output_type": "stream",
|
| 1123 |
+
"text": [
|
| 1124 |
+
"Reusing dataset glue (C:\\Users\\1seba\\.cache\\huggingface\\datasets\\glue\\sst2\\1.0.0\\dacbe3125aa31d7f70367a07a8a9e72a5a0bfeb5fc42e75c9db75b96da6053ad)\n",
|
| 1125 |
+
"100%|ββββββββββ| 68/68 [00:03<00:00, 20.33ba/s]\n",
|
| 1126 |
+
"100%|ββββββββββ| 1/1 [00:00<00:00, 17.24ba/s]\n",
|
| 1127 |
+
"100%|ββββββββββ| 2/2 [00:00<00:00, 16.53ba/s]\n"
|
| 1128 |
+
]
|
| 1129 |
+
}
|
| 1130 |
+
],
|
| 1131 |
+
"source": [
|
| 1132 |
+
"device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')\n",
|
| 1133 |
+
"\n",
|
| 1134 |
+
"sst2_datasets = load_dataset(\"glue\", \"sst2\")\n",
|
| 1135 |
+
"def tokenize_function (example):\n",
|
| 1136 |
+
" return tokenizer(example['sentence'], truncation=True)\n",
|
| 1137 |
+
"tokenized_datasets = sst2_datasets.map(tokenize_function, batched=True)\n",
|
| 1138 |
+
"tokenized_datasets = tokenized_datasets.remove_columns([\"idx\", \"sentence\"])\n",
|
| 1139 |
+
"tokenized_datasets = tokenized_datasets.rename_column('label', 'labels')\n",
|
| 1140 |
+
"tokenized_datasets.set_format('torch')\n",
|
| 1141 |
+
"data_collator = DataCollatorWithPadding(tokenizer=tokenizer)\n",
|
| 1142 |
+
"train_dataset = DataLoader(\n",
|
| 1143 |
+
" tokenized_datasets['train'].shard(num_shards=180, index=0), shuffle=True, batch_size=8, collate_fn=data_collator\n",
|
| 1144 |
+
")\n",
|
| 1145 |
+
"eval_dataset = DataLoader(\n",
|
| 1146 |
+
" tokenized_datasets['validation'].shard(num_shards=4, index=0), batch_size=8, collate_fn=data_collator\n",
|
| 1147 |
+
")"
|
| 1148 |
+
]
|
| 1149 |
+
},
|
| 1150 |
+
{
|
| 1151 |
+
"cell_type": "code",
|
| 1152 |
+
"execution_count": 31,
|
| 1153 |
+
"metadata": {},
|
| 1154 |
+
"outputs": [
|
| 1155 |
+
{
|
| 1156 |
+
"name": "stderr",
|
| 1157 |
+
"output_type": "stream",
|
| 1158 |
+
"text": [
|
| 1159 |
+
"Some weights of the model checkpoint at bert-base-uncased were not used when initializing BertForSequenceClassification: ['cls.predictions.transform.LayerNorm.weight', 'cls.predictions.decoder.weight', 'cls.predictions.transform.dense.weight', 'cls.predictions.transform.LayerNorm.bias', 'cls.seq_relationship.bias', 'cls.predictions.bias', 'cls.predictions.transform.dense.bias', 'cls.seq_relationship.weight']\n",
|
| 1160 |
+
"- This IS expected if you are initializing BertForSequenceClassification from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n",
|
| 1161 |
+
"- This IS NOT expected if you are initializing BertForSequenceClassification from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n",
|
| 1162 |
+
"Some weights of BertForSequenceClassification were not initialized from the model checkpoint at bert-base-uncased and are newly initialized: ['classifier.weight', 'classifier.bias']\n",
|
| 1163 |
+
"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n",
|
| 1164 |
+
"100%|ββββββββββ| 141/141 [18:15<00:00, 7.77s/it]\n",
|
| 1165 |
+
"100%|ββββββββββ| 141/141 [01:12<00:00, 2.21it/s]"
|
| 1166 |
+
]
|
| 1167 |
+
},
|
| 1168 |
+
{
|
| 1169 |
+
"name": "stdout",
|
| 1170 |
+
"output_type": "stream",
|
| 1171 |
+
"text": [
|
| 1172 |
+
"[{'accuracy': 0.7568807339449541}, {'accuracy': 0.8256880733944955}, {'accuracy': 0.8623853211009175}]\n"
|
| 1173 |
+
]
|
| 1174 |
+
}
|
| 1175 |
+
],
|
| 1176 |
+
"source": [
|
| 1177 |
+
"model = AutoModelForSequenceClassification.from_pretrained(checkpoint, num_labels=2)\n",
|
| 1178 |
+
"model.to(device)\n",
|
| 1179 |
+
"optimizer= AdamW(model.parameters(), 5e-5)\n",
|
| 1180 |
+
"\n",
|
| 1181 |
+
"num_epochs = 3\n",
|
| 1182 |
+
"num_training_steps = num_epochs * len(train_dataset)\n",
|
| 1183 |
+
"lr_scheduler = get_scheduler(\n",
|
| 1184 |
+
" 'linear',\n",
|
| 1185 |
+
" optimizer=optimizer,\n",
|
| 1186 |
+
" num_warmup_steps=0,\n",
|
| 1187 |
+
" num_training_steps=num_training_steps,\n",
|
| 1188 |
+
")\n",
|
| 1189 |
+
"\n",
|
| 1190 |
+
"metrics = []\n",
|
| 1191 |
+
"\n",
|
| 1192 |
+
"progress_bar = tqdm(range(num_training_steps))\n",
|
| 1193 |
+
"model.train()\n",
|
| 1194 |
+
"for epoch in range(num_epochs):\n",
|
| 1195 |
+
" for batch in train_dataset:\n",
|
| 1196 |
+
" batch = {k: v.to(device) for k, v in batch.items()}\n",
|
| 1197 |
+
" outputs = model(**batch)\n",
|
| 1198 |
+
" loss = outputs.loss\n",
|
| 1199 |
+
" loss.backward()\n",
|
| 1200 |
+
" optimizer.step()\n",
|
| 1201 |
+
" lr_scheduler.step()\n",
|
| 1202 |
+
" optimizer.zero_grad()\n",
|
| 1203 |
+
" progress_bar.update(1)\n",
|
| 1204 |
+
"\n",
|
| 1205 |
+
" metric= load_metric(\"glue\", \"sst2\")\n",
|
| 1206 |
+
" model.eval()\n",
|
| 1207 |
+
" for batch in eval_dataset:\n",
|
| 1208 |
+
" batch = {k: v.to(device) for k, v in batch.items()}\n",
|
| 1209 |
+
" with torch.no_grad():\n",
|
| 1210 |
+
" outputs = model(**batch)\n",
|
| 1211 |
+
" logits = outputs.logits\n",
|
| 1212 |
+
" predictions = torch.argmax(logits, dim=-1)\n",
|
| 1213 |
+
" metric.add_batch(predictions=predictions, references=batch[\"labels\"])\n",
|
| 1214 |
+
" metrics.append(metric.compute())\n",
|
| 1215 |
+
"\n",
|
| 1216 |
+
"print(metrics)"
|
| 1217 |
+
]
|
| 1218 |
+
},
|
| 1219 |
+
{
|
| 1220 |
+
"cell_type": "markdown",
|
| 1221 |
+
"metadata": {},
|
| 1222 |
+
"source": [
|
| 1223 |
+
"## (end)"
|
| 1224 |
+
]
|
| 1225 |
+
},
|
| 1226 |
+
{
|
| 1227 |
+
"cell_type": "code",
|
| 1228 |
+
"execution_count": 8,
|
| 1229 |
+
"metadata": {},
|
| 1230 |
+
"outputs": [],
|
| 1231 |
+
"source": [
|
| 1232 |
+
"from accelerate import Accelerator\n",
|
| 1233 |
+
"accelerator = Accelerator()"
|
| 1234 |
+
]
|
| 1235 |
+
},
|
| 1236 |
+
{
|
| 1237 |
+
"cell_type": "code",
|
| 1238 |
+
"execution_count": 9,
|
| 1239 |
+
"metadata": {},
|
| 1240 |
+
"outputs": [
|
| 1241 |
+
{
|
| 1242 |
+
"name": "stderr",
|
| 1243 |
+
"output_type": "stream",
|
| 1244 |
+
"text": [
|
| 1245 |
+
"Some weights of the model checkpoint at bert-base-uncased were not used when initializing BertForSequenceClassification: ['cls.predictions.transform.dense.weight', 'cls.predictions.decoder.weight', 'cls.predictions.bias', 'cls.predictions.transform.LayerNorm.bias', 'cls.seq_relationship.weight', 'cls.predictions.transform.dense.bias', 'cls.seq_relationship.bias', 'cls.predictions.transform.LayerNorm.weight']\n",
|
| 1246 |
+
"- This IS expected if you are initializing BertForSequenceClassification from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n",
|
| 1247 |
+
"- This IS NOT expected if you are initializing BertForSequenceClassification from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n",
|
| 1248 |
+
"Some weights of BertForSequenceClassification were not initialized from the model checkpoint at bert-base-uncased and are newly initialized: ['classifier.weight', 'classifier.bias']\n",
|
| 1249 |
+
"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n",
|
| 1250 |
+
"100%|ββββββββββ| 93/93 [01:11<00:00, 1.85it/s]"
|
| 1251 |
+
]
|
| 1252 |
+
},
|
| 1253 |
+
{
|
| 1254 |
+
"name": "stdout",
|
| 1255 |
+
"output_type": "stream",
|
| 1256 |
+
"text": [
|
| 1257 |
+
"[{'accuracy': 0.6707317073170732}, {'accuracy': 0.7073170731707317}, {'accuracy': 0.7560975609756098}]\n"
|
| 1258 |
+
]
|
| 1259 |
+
}
|
| 1260 |
+
],
|
| 1261 |
+
"source": [
|
| 1262 |
+
"model = AutoModelForSequenceClassification.from_pretrained(checkpoint, num_labels=2)\n",
|
| 1263 |
+
"optimizer= AdamW(model.parameters(), 5e-5)\n",
|
| 1264 |
+
"train_dataloader, eval_dataloader, model, optimizer = accelerator.prepare(\n",
|
| 1265 |
+
" train_dataloader, eval_dataloader, model, optimizer\n",
|
| 1266 |
+
")\n",
|
| 1267 |
+
"\n",
|
| 1268 |
+
"num_epochs = 3\n",
|
| 1269 |
+
"num_training_steps = num_epochs * len(train_dataloader)\n",
|
| 1270 |
+
"lr_scheduler = get_scheduler(\n",
|
| 1271 |
+
" 'linear',\n",
|
| 1272 |
+
" optimizer=optimizer,\n",
|
| 1273 |
+
" num_warmup_steps=0,\n",
|
| 1274 |
+
" num_training_steps=num_training_steps,\n",
|
| 1275 |
+
")\n",
|
| 1276 |
+
"\n",
|
| 1277 |
+
"metrics = []\n",
|
| 1278 |
+
"\n",
|
| 1279 |
+
"progress_bar = tqdm(range(num_training_steps))\n",
|
| 1280 |
+
"model.train()\n",
|
| 1281 |
+
"for epoch in range(num_epochs):\n",
|
| 1282 |
+
" for batch in train_dataloader:\n",
|
| 1283 |
+
" outputs = model(**batch)\n",
|
| 1284 |
+
" loss = outputs.loss\n",
|
| 1285 |
+
" accelerator.backward(loss)\n",
|
| 1286 |
+
" optimizer.step()\n",
|
| 1287 |
+
" lr_scheduler.step()\n",
|
| 1288 |
+
" optimizer.zero_grad()\n",
|
| 1289 |
+
" progress_bar.update(1)\n",
|
| 1290 |
+
"\n",
|
| 1291 |
+
" metric= load_metric(\"glue\", \"sst2\")\n",
|
| 1292 |
+
" model.eval()\n",
|
| 1293 |
+
" for batch in eval_dataloader:\n",
|
| 1294 |
+
" with torch.no_grad():\n",
|
| 1295 |
+
" outputs = model(**batch)\n",
|
| 1296 |
+
" logits = outputs.logits\n",
|
| 1297 |
+
" predictions = torch.argmax(logits, dim=-1)\n",
|
| 1298 |
+
" metric.add_batch(predictions=predictions, references=batch[\"labels\"])\n",
|
| 1299 |
+
" metrics.append(metric.compute())\n",
|
| 1300 |
+
"\n",
|
| 1301 |
+
"print(metrics)"
|
| 1302 |
+
]
|
| 1303 |
+
},
|
| 1304 |
+
{
|
| 1305 |
+
"cell_type": "code",
|
| 1306 |
+
"execution_count": null,
|
| 1307 |
+
"metadata": {},
|
| 1308 |
+
"outputs": [],
|
| 1309 |
+
"source": []
|
| 1310 |
+
}
|
| 1311 |
+
],
|
| 1312 |
+
"metadata": {
|
| 1313 |
+
"interpreter": {
|
| 1314 |
+
"hash": "c23364dc34acf6d559b2ccbb804894040b11f1b7cd300b891de29d32dea3c2c2"
|
| 1315 |
+
},
|
| 1316 |
+
"kernelspec": {
|
| 1317 |
+
"display_name": "Python 3.8.10 64-bit ('AI': conda)",
|
| 1318 |
+
"name": "python3"
|
| 1319 |
+
},
|
| 1320 |
+
"language_info": {
|
| 1321 |
+
"codemirror_mode": {
|
| 1322 |
+
"name": "ipython",
|
| 1323 |
+
"version": 3
|
| 1324 |
+
},
|
| 1325 |
+
"file_extension": ".py",
|
| 1326 |
+
"mimetype": "text/x-python",
|
| 1327 |
+
"name": "python",
|
| 1328 |
+
"nbconvert_exporter": "python",
|
| 1329 |
+
"pygments_lexer": "ipython3",
|
| 1330 |
+
"version": "3.8.10"
|
| 1331 |
+
}
|
| 1332 |
+
},
|
| 1333 |
+
"nbformat": 4,
|
| 1334 |
+
"nbformat_minor": 5
|
| 1335 |
+
}
|