--- language: - it license: apache-2.0 tags: - generated_from_trainer datasets: - mozilla-foundation/common_voice_13_0 metrics: - wer model-index: - name: whisper-large-v2-italian results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: COMMON_VOICE_13_0 type: mozilla-foundation/common_voice_13_0 config: it split: test args: it metrics: - name: Wer type: wer value: 0.1066490153897071 --- # whisper-large-v2-italian This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) on the COMMON_VOICE_13_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.2397 - Wer Ortho: 0.1538 - Wer: 0.1066 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant_with_warmup - lr_scheduler_warmup_steps: 50 - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:| | 0.2182 | 1.0 | 979 | 0.2368 | 0.1564 | 0.1070 | | 0.1192 | 2.0 | 1958 | 0.2397 | 0.1538 | 0.1066 | ### Framework versions - Transformers 4.30.0.dev0 - Pytorch 2.0.1+cu117 - Datasets 2.13.1 - Tokenizers 0.13.3