cutoff_len: 2048 dataset: treino_pt_rde dataset_dir: data ddp_timeout: 180000000 do_train: true finetuning_type: lora flash_attn: auto fp16: true gradient_accumulation_steps: 4 learning_rate: 3.0e-05 logging_steps: 10 lora_alpha: 16 lora_dropout: 0 lora_rank: 8 lora_target: all lr_scheduler_type: cosine max_grad_norm: 1.0 max_samples: 3716 model_name_or_path: google/gemma-2-9b-it num_train_epochs: 3.0 optim: adamw_torch output_dir: saves/Gemma-2-9B-Instruct/lora/gemma2-9b-finetuned packing: false per_device_train_batch_size: 8 plot_loss: true preprocessing_num_workers: 16 quantization_bit: 4 quantization_method: bitsandbytes report_to: none save_steps: 1000 stage: sft template: alpaca use_unsloth: true warmup_steps: 0