wav2vec2_xlsr_300m / README.md
kingabzpro's picture
Update README.md
2443545
|
raw
history blame
4.38 kB
---
license: apache-2.0
base_model: facebook/wav2vec2-xls-r-300m
tags:
- generated_from_trainer
metrics:
- wer
- cer
model-index:
- name: wav2vec2-large-xls-r-300m-hi
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 15
type: mozilla-foundation/common_voice_15_0
args: hi
metrics:
- name: Test WER
type: wer
value: 0.2934
- name: Test CER
type: cer
value: 0.0786
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 8
type: mozilla-foundation/common_voice_8_0
args: hi
metrics:
- name: Test WER
type: wer
value: 0.5209
- name: Test CER
type: cer
value: 0.1790
datasets:
- mozilla-foundation/common_voice_15_0
language:
- hi
library_name: transformers
pipeline_tag: automatic-speech-recognition
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-large-xls-r-300m-hi
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3611
- Wer: 0.2992
- Cer: 0.0786
View the results on Kaggle Notebook: https://www.kaggle.com/code/kingabzpro/wav2vec-2-eval
## Evaluation
```python
import torch
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import librosa
import unicodedata
import re
test_dataset = load_dataset("mozilla-foundation/common_voice_8_0", "hi", split="test")
wer = load_metric("wer")
cer = load_metric("cer")
processor = Wav2Vec2Processor.from_pretrained("SakshiRathi77/wav2vec2_xlsr_300m")
model = Wav2Vec2ForCTC.from_pretrained("SakshiRathi77/wav2vec2_xlsr_300m")
model.to("cuda")
# Preprocessing the datasets.
def speech_file_to_array_fn(batch):
chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\β€œ\%\β€˜\”\οΏ½\’\'\|\&\–]'
remove_en = '[A-Za-z]'
batch["sentence"] = re.sub(chars_to_ignore_regex, "", batch["sentence"].lower())
batch["sentence"] = re.sub(remove_en, "", batch["sentence"]).lower()
batch["sentence"] = unicodedata.normalize("NFKC", batch["sentence"])
speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000)
batch["speech"] = speech_array
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def evaluate(batch):
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values.to("cuda")).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["pred_strings"] = processor.batch_decode(pred_ids, skip_special_tokens=True)
return batch
result = test_dataset.map(evaluate, batched=True, batch_size=8)
print("WER: {}".format(wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
print("CER: {}".format(cer.compute(predictions=result["pred_strings"], references=result["sentence"])))
```
**WER: 0.5209850206372026**
**CER: 0.17902923538230883**
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 300
- num_epochs: 100
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|
| 7.0431 | 19.05 | 300 | 3.4423 | 1.0 | 1.0 |
| 2.3233 | 38.1 | 600 | 0.5965 | 0.4757 | 0.1329 |
| 0.5676 | 57.14 | 900 | 0.3962 | 0.3584 | 0.0954 |
| 0.3611 | 76.19 | 1200 | 0.3651 | 0.3190 | 0.0820 |
| 0.2996 | 95.24 | 1500 | 0.3611 | 0.2992 | 0.0786 |
### Framework versions
- Transformers 4.33.0
- Pytorch 2.0.0
- Datasets 2.1.0
- Tokenizers 0.13.3