Upload folder using huggingface_hub
Browse files
README.md
CHANGED
|
@@ -1,38 +1,105 @@
|
|
| 1 |
---
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
- tokenizer
|
| 6 |
-
- bpe
|
| 7 |
-
license: mit
|
| 8 |
-
---
|
| 9 |
|
| 10 |
-
|
| 11 |
|
| 12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
|
| 14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
|
| 16 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
|
| 18 |
-
##
|
| 19 |
-
-
|
| 20 |
-
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
|
| 22 |
## Usage
|
| 23 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
```python
|
| 25 |
from tokenizers import Tokenizer
|
| 26 |
|
| 27 |
# Load the tokenizer
|
| 28 |
tokenizer = Tokenizer.from_file("tokenizer.json")
|
| 29 |
|
| 30 |
-
#
|
| 31 |
-
text = "నమస్కారం"
|
| 32 |
encoding = tokenizer.encode(text)
|
| 33 |
-
|
|
|
|
|
|
|
|
|
|
| 34 |
```
|
| 35 |
|
| 36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
|
| 38 |
-
The tokenizer was trained on Telugu text data collected from Wikipedia articles. The data includes a diverse range of topics and writing styles.
|
|
|
|
| 1 |
---
|
| 2 |
+
# Telugu Tokenizer
|
| 3 |
+
|
| 4 |
+
A Unigram tokenizer specifically trained for the Telugu language using a large corpus of Telugu text from Wikipedia and news sources. This tokenizer is designed to efficiently handle Telugu text while maintaining high compression ratios.
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
|
| 6 |
+
## Key Features
|
| 7 |
|
| 8 |
+
### Tokenizer Statistics
|
| 9 |
+
- **Vocabulary Size**: 50000 tokens (✓ Exceeds requirement of 5000+)
|
| 10 |
+
- **Compression Ratio**: 6.77 (✓ Meets requirement of ≥3.0)
|
| 11 |
+
- **Average Token Length**: 6.26 characters
|
| 12 |
+
- **Training Data**: 2,500+ Telugu articles
|
| 13 |
+
- **Minimum Text Length**: 500 characters per article
|
| 14 |
|
| 15 |
+
### Model Configuration
|
| 16 |
+
- **Architecture**: Unigram Language Model
|
| 17 |
+
- **Max Piece Length**: 128
|
| 18 |
+
- **Sub-iterations**: 20
|
| 19 |
+
- **Initial Vocabulary**: 50000 tokens
|
| 20 |
+
- **Auto-scaling**: Up to 500,000 tokens if needed
|
| 21 |
|
| 22 |
+
### Special Tokens
|
| 23 |
+
- `<s>`: Start of text token
|
| 24 |
+
- `</s>`: End of text token
|
| 25 |
+
- `<unk>`: Unknown token
|
| 26 |
+
- `<pad>`: Padding token
|
| 27 |
+
- `<mask>`: Mask token (for potential MLM tasks)
|
| 28 |
|
| 29 |
+
## Dataset Details
|
| 30 |
+
- **Sources**:
|
| 31 |
+
- Telugu Wikipedia articles
|
| 32 |
+
- Major Telugu news websites
|
| 33 |
+
- Combined and cleaned text corpus
|
| 34 |
+
- **Content**: Diverse topics including literature, culture, history, and general knowledge
|
| 35 |
+
- **Preprocessing**:
|
| 36 |
+
- Removed references and citations
|
| 37 |
+
- Normalized whitespace
|
| 38 |
+
- Filtered short articles
|
| 39 |
+
- Cleaned special characters
|
| 40 |
+
- Combined short texts for better context
|
| 41 |
|
| 42 |
## Usage
|
| 43 |
|
| 44 |
+
### Installation
|
| 45 |
+
```bash
|
| 46 |
+
pip install tokenizers
|
| 47 |
+
```
|
| 48 |
+
|
| 49 |
+
### Basic Usage
|
| 50 |
```python
|
| 51 |
from tokenizers import Tokenizer
|
| 52 |
|
| 53 |
# Load the tokenizer
|
| 54 |
tokenizer = Tokenizer.from_file("tokenizer.json")
|
| 55 |
|
| 56 |
+
# Encode text
|
| 57 |
+
text = "నమస్కారం" # Hello
|
| 58 |
encoding = tokenizer.encode(text)
|
| 59 |
+
|
| 60 |
+
# Get tokens
|
| 61 |
+
print("Tokens:", encoding.tokens)
|
| 62 |
+
print("Token IDs:", encoding.ids)
|
| 63 |
```
|
| 64 |
|
| 65 |
+
### Example Outputs
|
| 66 |
+
```python
|
| 67 |
+
# Input: "తెలుగు భాష చాలా అందమైనది"
|
| 68 |
+
# Output tokens: ['తెలుగు', ' భాష', ' చాలా', ' అంద', 'మైన', 'ది']
|
| 69 |
+
```
|
| 70 |
+
|
| 71 |
+
## Technical Details
|
| 72 |
+
|
| 73 |
+
### Tokenizer Configuration
|
| 74 |
+
- **Model**: Unigram Language Model (SentencePiece-style)
|
| 75 |
+
- **Pre-tokenization**: ByteLevel + Character-level splitting
|
| 76 |
+
- **Decoder**: ByteLevel
|
| 77 |
+
- **Post-processor**: ByteLevel with trimmed offsets
|
| 78 |
+
|
| 79 |
+
### Performance Metrics
|
| 80 |
+
1. **Compression Ratio**: 6.77
|
| 81 |
+
- Calculated as: total_chars / total_tokens
|
| 82 |
+
- Higher ratio indicates better compression
|
| 83 |
+
- Median ratio: 7.05
|
| 84 |
+
2. **Vocabulary Coverage**: 50000 unique tokens
|
| 85 |
+
- Includes special tokens
|
| 86 |
+
- Optimized for Telugu language patterns
|
| 87 |
+
- Auto-scales vocabulary size for better compression
|
| 88 |
+
|
| 89 |
+
## Examples
|
| 90 |
+
Check `examples.json` for more tokenization examples with different types of Telugu text, including:
|
| 91 |
+
- Short phrases
|
| 92 |
+
- Complete sentences
|
| 93 |
+
- Long paragraphs
|
| 94 |
+
- Various writing styles
|
| 95 |
+
|
| 96 |
+
## Training Process
|
| 97 |
+
The tokenizer was trained using the following steps:
|
| 98 |
+
1. Collected 2,500+ Telugu articles from multiple sources
|
| 99 |
+
2. Cleaned and preprocessed the text
|
| 100 |
+
3. Combined short texts to create better context
|
| 101 |
+
4. Trained Unigram model with initial vocab size of 50,000
|
| 102 |
+
5. Auto-scaled vocabulary if needed for better compression
|
| 103 |
+
6. Validated against requirements
|
| 104 |
+
|
| 105 |
|
|
|