refreneces / content.py
SaiLochana's picture
1
bfbb419
from __future__ import annotations
import langchain
import vertexai
from vertexai.language_models import TextGenerationModel
import streamlit as st
from langchain_community.llms import VertexAI
from langchain.prompts import PromptTemplate
from langchain.chat_models import ChatVertexAI
from typing import Any
from langchain.base_language import BaseLanguageModel
from langchain.chains.llm import LLMChain
from langchain.embeddings import VertexAIEmbeddings
import os
os.environ['GOOGLE_APPLICATION_CREDENTIALS']="agileai-poc-10f5fe13f8a2.json"
model = TextGenerationModel.from_pretrained("text-bison@001")
# project_id = "agileai-poc"
# loc = "us-central1"
# vertexai.init(project=project_id, location=loc)
# params = VertexAI(
# model_name="text-bison@001",
# max_output_tokens=256,
# temperature=0.2,
# top_p=0.8
# )
prompt="modify the text and highlight the points of the given input which type of tone it contains "
# class txt_gen(LLMChain):
# """LLM Chain specifically for generating multi paragraph rich text product description using emojis."""
# @classmethod
# def from_llm(
# cls, llm: BaseLanguageModel, prompt: str, **kwargs: Any
# ) -> txt_gen:
# """Load txt_gen Chain from LLM."""
# return cls(llm=params, prompt=prompt, **kwargs)
# def generate_text(input):
# with open(prompt, "r") as file:
# prompt_template = file.read()
# PROMPT = PromptTemplate(
# input_variables=[input], template=prompt_template
# )
# DescGen_chain = txt_gen.from_llm(llm=params, prompt=PROMPT)
# DescGen_query = DescGen_chain.apply_and_parse(
# [{"input":input}]
# )
# return DescGen_query[0]["text"]
c1,c2,c3=st.columns(3)
with c1:
input=st.text_input("Enter your content :")
submit=st.button("Submit")
if submit:
# description = st.write(generate_text(input))
desc=st.write(model.predict(prompt))
# print(model.predict(prompt))
# with c3:
# output=st.write(description)