from __future__ import annotations | |
import langchain | |
import vertexai | |
from vertexai.language_models import TextGenerationModel | |
import streamlit as st | |
from langchain_community.llms import VertexAI | |
from langchain.prompts import PromptTemplate | |
from langchain.chat_models import ChatVertexAI | |
from typing import Any | |
from langchain.base_language import BaseLanguageModel | |
from langchain.chains.llm import LLMChain | |
from langchain.embeddings import VertexAIEmbeddings | |
import os | |
os.environ['GOOGLE_APPLICATION_CREDENTIALS']="agileai-poc-10f5fe13f8a2.json" | |
model = TextGenerationModel.from_pretrained("text-bison@001") | |
# project_id = "agileai-poc" | |
# loc = "us-central1" | |
# vertexai.init(project=project_id, location=loc) | |
# params = VertexAI( | |
# model_name="text-bison@001", | |
# max_output_tokens=256, | |
# temperature=0.2, | |
# top_p=0.8 | |
# ) | |
prompt="modify the text and highlight the points of the given input which type of tone it contains " | |
# class txt_gen(LLMChain): | |
# """LLM Chain specifically for generating multi paragraph rich text product description using emojis.""" | |
# @classmethod | |
# def from_llm( | |
# cls, llm: BaseLanguageModel, prompt: str, **kwargs: Any | |
# ) -> txt_gen: | |
# """Load txt_gen Chain from LLM.""" | |
# return cls(llm=params, prompt=prompt, **kwargs) | |
# def generate_text(input): | |
# with open(prompt, "r") as file: | |
# prompt_template = file.read() | |
# PROMPT = PromptTemplate( | |
# input_variables=[input], template=prompt_template | |
# ) | |
# DescGen_chain = txt_gen.from_llm(llm=params, prompt=PROMPT) | |
# DescGen_query = DescGen_chain.apply_and_parse( | |
# [{"input":input}] | |
# ) | |
# return DescGen_query[0]["text"] | |
c1,c2,c3=st.columns(3) | |
with c1: | |
input=st.text_input("Enter your content :") | |
submit=st.button("Submit") | |
if submit: | |
# description = st.write(generate_text(input)) | |
desc=st.write(model.predict(prompt)) | |
# print(model.predict(prompt)) | |
# with c3: | |
# output=st.write(description) | |