Update README.md
Browse files
README.md
CHANGED
|
@@ -24,52 +24,4 @@ It achieves the following results on the evaluation set:
|
|
| 24 |
- Precision: 0.5070
|
| 25 |
- Recall: 0.5725
|
| 26 |
- F1: 0.5377
|
| 27 |
-
- Accuracy: 0.7903
|
| 28 |
-
|
| 29 |
-
## Model description
|
| 30 |
-
|
| 31 |
-
More information needed
|
| 32 |
-
|
| 33 |
-
## Intended uses & limitations
|
| 34 |
-
|
| 35 |
-
More information needed
|
| 36 |
-
|
| 37 |
-
## Training and evaluation data
|
| 38 |
-
|
| 39 |
-
More information needed
|
| 40 |
-
|
| 41 |
-
## Training procedure
|
| 42 |
-
|
| 43 |
-
### Training hyperparameters
|
| 44 |
-
|
| 45 |
-
The following hyperparameters were used during training:
|
| 46 |
-
- learning_rate: 2e-05
|
| 47 |
-
- train_batch_size: 8
|
| 48 |
-
- eval_batch_size: 8
|
| 49 |
-
- seed: 42
|
| 50 |
-
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
| 51 |
-
- lr_scheduler_type: cosine
|
| 52 |
-
- num_epochs: 10
|
| 53 |
-
|
| 54 |
-
### Training results
|
| 55 |
-
|
| 56 |
-
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
| 57 |
-
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
| 58 |
-
| No log | 1.0 | 45 | 1.5295 | 0.2627 | 0.0223 | 0.0411 | 0.6639 |
|
| 59 |
-
| No log | 2.0 | 90 | 1.2463 | 0.3241 | 0.2831 | 0.3022 | 0.6845 |
|
| 60 |
-
| No log | 3.0 | 135 | 1.0915 | 0.3560 | 0.4052 | 0.3790 | 0.7005 |
|
| 61 |
-
| No log | 4.0 | 180 | 0.9411 | 0.5225 | 0.3180 | 0.3954 | 0.7428 |
|
| 62 |
-
| No log | 5.0 | 225 | 0.8653 | 0.4437 | 0.5304 | 0.4832 | 0.7580 |
|
| 63 |
-
| No log | 6.0 | 270 | 0.7936 | 0.4913 | 0.5362 | 0.5128 | 0.7798 |
|
| 64 |
-
| No log | 7.0 | 315 | 0.7715 | 0.4974 | 0.5623 | 0.5279 | 0.7840 |
|
| 65 |
-
| No log | 8.0 | 360 | 0.7545 | 0.5083 | 0.5601 | 0.5329 | 0.7880 |
|
| 66 |
-
| No log | 9.0 | 405 | 0.7464 | 0.5125 | 0.5694 | 0.5395 | 0.7921 |
|
| 67 |
-
| No log | 10.0 | 450 | 0.7475 | 0.5070 | 0.5725 | 0.5377 | 0.7903 |
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
### Framework versions
|
| 71 |
-
|
| 72 |
-
- Transformers 4.35.2
|
| 73 |
-
- Pytorch 2.1.0+cu121
|
| 74 |
-
- Datasets 2.15.0
|
| 75 |
-
- Tokenizers 0.15.0
|
|
|
|
| 24 |
- Precision: 0.5070
|
| 25 |
- Recall: 0.5725
|
| 26 |
- F1: 0.5377
|
| 27 |
+
- Accuracy: 0.7903
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|