--- library_name: transformers language: - en base_model: microsoft/phi-2 pipeline_tag: text-generation --- # Model Card for Model ID ## Model Details ### Model Description This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** English - **Finetuned from model [optional]:** https://huggingface.co/microsoft/phi-2 ### Model Sources [optional] - **Repository:** Coming soon - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses Automatic identification of sections in (clinical trial) abstracts. ## How to Get Started with the Model Prompt Format: ''' ###Unstruct: {abstract} ###Struct: ''' ## Training Details ### Training Data 50k randomly sampled RCT abstract within period [1970-2023] ### Training Procedure Generation of (unstructured, structured) pairs for structured abstracts. Generation of dedicated prompt for Causal_LM modelling. #### Training Hyperparameters bnb_config = BitsAndBytesConfig(load_in_4bit=True, bnb_4bit_quant_type='nf4', #bnb_4bit_compute_dtype='float16', bnb_4bit_compute_dtype=torch.bfloat16, bnb_4bit_use_double_quant=True) ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data 10k randomly sampled RCT abstract within period [1970-2023] #### Metrics [More Information Needed] ### Results [More Information Needed] #### Summary ## Technical Specifications [optional] ### Model Architecture and Objective LoraConfig( r=16, lora_alpha=32, target_modules=[ 'q_proj', 'k_proj', 'v_proj', 'dense', 'fc1', 'fc2', ], #print(model) will show the modules to use bias="none", lora_dropout=0.05, task_type="CAUSAL_LM", ) ### Compute Infrastructure #### Hardware 1 x RTX4090 - 24 GB #### Software torch einops transformers bitsandbytes accelerate peft ## Model Card Contact