--- language: en tags: - vision - image-classification - medical-imaging - tumor-classification license: apache-2.0 base_model: google/vit-base-patch16-224 model-index: - name: vit_tumor_classifier results: - task: name: Image Classification type: binary-classification metrics: - name: Accuracy type: accuracy value: 0.85 # Replace with your actual accuracy - name: F1 Score type: f1 value: 0.84 # Replace with your actual F1 score --- # Vision Transformer for Tumor Classification This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) for binary tumor classification in medical images. ## Model Details - **Model Type:** Vision Transformer (ViT) - **Base Model:** google/vit-base-patch16-224 - **Task:** Binary Image Classification - **Training Data:** Medical image dataset with tumor/non-tumor annotations - **Input:** Medical images (224x224 pixels) - **Output:** Binary classification (tumor/non-tumor) - **Model Size:** 85.8M parameters - **Framework:** PyTorch - **License:** Apache 2.0 ## Intended Use This model is designed for tumor classification in medical imaging. It should be used as part of a larger medical diagnostic system and not as a standalone diagnostic tool. ## Usage ```python from transformers import AutoImageProcessor, AutoModelForImageClassification from PIL import Image # Load model and processor processor = AutoImageProcessor.from_pretrained("SIATCN/vit_tumor_classifier") model = AutoModelForImageClassification.from_pretrained("SIATCN/vit_tumor_classifier") # Load and process image image = Image.open("path_to_your_image.jpg") inputs = processor(image, return_tensors="pt") # Make prediction outputs = model(**inputs) predictions = outputs.logits.softmax(dim=-1) predicted_label = predictions.argmax().item() confidence = predictions[0][predicted_label].item() # Get class name class_names = ["non-tumor", "tumor"] print(f"Predicted: {class_names[predicted_label]} (confidence: {confidence:.2f})")