# coding=utf-8 # Copyright 2023 Language Technology Group from University of Oslo and The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ LTG-BERT configutation """ from transformers.configuration_utils import PretrainedConfig LTG_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP = { "bnc-bert-span": "https://huggingface.co/ltg/bnc-bert-span", "bnc-bert-span-2x": "https://huggingface.co/ltg/bnc-bert-span-2x", "bnc-bert-span-0.5x": "https://huggingface.co/ltg/bnc-bert-span-0.5x", "bnc-bert-span-0.25x": "https://huggingface.co/ltg/bnc-bert-span-0.25x", "bnc-bert-span-order": "https://huggingface.co/ltg/bnc-bert-span-order", "bnc-bert-span-document": "https://huggingface.co/ltg/bnc-bert-span-document", "bnc-bert-span-word": "https://huggingface.co/ltg/bnc-bert-span-word", "bnc-bert-span-subword": "https://huggingface.co/ltg/bnc-bert-span-subword", "norbert3-xs": "https://huggingface.co/ltg/norbert3-xs/config.json", "norbert3-small": "https://huggingface.co/ltg/norbert3-small/config.json", "norbert3-base": "https://huggingface.co/ltg/norbert3-base/config.json", "norbert3-large": "https://huggingface.co/ltg/norbert3-large/config.json", "norbert3-oversampled-base": "https://huggingface.co/ltg/norbert3-oversampled-base/config.json", "norbert3-ncc-base": "https://huggingface.co/ltg/norbert3-ncc-base/config.json", "norbert3-nak-base": "https://huggingface.co/ltg/norbert3-nak-base/config.json", "norbert3-nb-base": "https://huggingface.co/ltg/norbert3-nb-base/config.json", "norbert3-wiki-base": "https://huggingface.co/ltg/norbert3-wiki-base/config.json", "norbert3-c4-base": "https://huggingface.co/ltg/norbert3-c4-base/config.json", } class LtgBertConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`LtgBertModel`]. It is used to instantiate an LTG-BERT model according to the specified arguments, defining the model architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 16384): Vocabulary size of the LTG-BERT model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`LtgBertModel`]. hidden_size (`int`, *optional*, defaults to 768): Dimensionality of the encoder layers and the pooler layer. num_hidden_layers (`int`, *optional*, defaults to 12): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 12): Number of attention heads for each attention layer in the Transformer encoder. intermediate_size (`int`, *optional*, defaults to 2048): Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder. hidden_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): The dropout ratio for the attention probabilities. max_position_embeddings (`int`, *optional*, defaults to 512): The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048). layer_norm_eps (`float`, *optional*, defaults to 1e-12): The epsilon used by the layer normalization layers. classifier_dropout (`float`, *optional*): The dropout ratio for the classification head. """ model_type = "ltgbert" def __init__( self, vocab_size=16384, attention_probs_dropout_prob=0.1, hidden_dropout_prob=0.1, hidden_size=768, intermediate_size=2048, max_position_embeddings=512, position_bucket_size=32, num_attention_heads=12, num_hidden_layers=12, layer_norm_eps=1.0e-7, pad_token_id=4, output_all_encoded_layers=True, classifier_dropout=None, **kwargs, ): super().__init__(pad_token_id=pad_token_id, **kwargs) self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.intermediate_size = intermediate_size self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.output_all_encoded_layers = output_all_encoded_layers self.position_bucket_size = position_bucket_size self.layer_norm_eps = layer_norm_eps self.classifier_dropout = classifier_dropout