--- library_name: transformers license: apache-2.0 base_model: distilbert/distilbert-base-cased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: ner_model_3 results: [] --- # ner_model_3 This model is a fine-tuned version of [distilbert/distilbert-base-cased](https://huggingface.co/distilbert/distilbert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0953 - Precision: 0.8317 - Recall: 0.8443 - F1: 0.8379 - Accuracy: 0.9727 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0649 | 1.0 | 2398 | 0.0958 | 0.8149 | 0.8358 | 0.8252 | 0.9710 | | 0.0599 | 2.0 | 4796 | 0.0935 | 0.8156 | 0.8440 | 0.8296 | 0.9712 | | 0.0459 | 3.0 | 7194 | 0.0953 | 0.8317 | 0.8443 | 0.8379 | 0.9727 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.5.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3