--- license: apache-2.0 tags: - generated_from_trainer base_model: openai/whisper-small datasets: - verba_lex_voice metrics: - wer model-index: - name: verbalex-hi results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: verba_lex_voice type: verba_lex_voice config: hi split: test args: hi metrics: - type: wer value: 1.6019256308100929 name: Wer --- # verbalex-hi This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the verba_lex_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.0554 - Wer: 1.6019 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:----:|:---------------:|:------:| | 0.0011 | 5.0505 | 1000 | 0.0504 | 1.7762 | | 0.0001 | 10.1010 | 2000 | 0.0529 | 1.6268 | | 0.0001 | 15.1515 | 3000 | 0.0541 | 1.6434 | | 0.0001 | 20.2020 | 4000 | 0.0550 | 1.6102 | | 0.0 | 25.2525 | 5000 | 0.0554 | 1.6019 | ### Framework versions - Transformers 4.40.2 - Pytorch 2.1.2 - Datasets 2.16.0 - Tokenizers 0.19.1