#ifndef YOLOV5_H_ #define YOLOV5_H_ #include #include "cuda_utils.h" #include "logging.h" #include "utils.h" #include "calibrator.h" #define USE_FP16 // set USE_INT8 or USE_FP16 or USE_FP32 #define DEVICE 0 // GPU id #define NMS_THRESH 0.45 #define CONF_THRESH 0.25 #define BATCH_SIZE 1 // stuff we know about the network and the input/output blobs static const int INPUT_H = Yolo::INPUT_H; static const int INPUT_W = Yolo::INPUT_W; static const int IMG_H = Yolo::IMG_H; static const int IMG_W = Yolo::IMG_W; static const int CLASS_NUM = Yolo::CLASS_NUM; static const int OUTPUT_SIZE = Yolo::MAX_OUTPUT_BBOX_COUNT * sizeof(Yolo::Detection) / sizeof(float) + 1; // we assume the yololayer outputs no more than MAX_OUTPUT_BBOX_COUNT boxes that conf >= 0.1 const char* INPUT_BLOB_NAME = "data"; const char* OUTPUT_DET_NAME = "det"; const char* OUTPUT_SEG_NAME = "seg"; const char* OUTPUT_LANE_NAME = "lane"; static Logger gLogger; ICudaEngine* build_engine(unsigned int maxBatchSize, IBuilder* builder, IBuilderConfig* config, DataType dt, float& gd, float& gw, std::string& wts_name) { INetworkDefinition* network = builder->createNetworkV2(0U); // Create input tensor of shape {3, INPUT_H, INPUT_W} with name INPUT_BLOB_NAME ITensor* data = network->addInput(INPUT_BLOB_NAME, dt, Dims3{ 3, INPUT_H, INPUT_W }); assert(data); // auto shuffle = network->addShuffle(*data); // shuffle->setReshapeDimensions(Dims3{ 3, INPUT_H, INPUT_W }); // shuffle->setFirstTranspose(Permutation{ 2, 0, 1 }); std::map weightMap = loadWeights(wts_name); Weights emptywts{ DataType::kFLOAT, nullptr, 0 }; // yolov5 backbone // auto focus0 = focus(network, weightMap, *shuffle->getOutput(0), 3, 32, 3, "model.0"); auto focus0 = focus(network, weightMap, *data, 3, 32, 3, "model.0"); auto conv1 = convBlock(network, weightMap, *focus0->getOutput(0), 64, 3, 2, 1, "model.1"); auto bottleneck_CSP2 = bottleneckCSP(network, weightMap, *conv1->getOutput(0), 64, 64, 1, true, 1, 0.5, "model.2"); auto conv3 = convBlock(network, weightMap, *bottleneck_CSP2->getOutput(0), 128, 3, 2, 1, "model.3"); auto bottleneck_csp4 = bottleneckCSP(network, weightMap, *conv3->getOutput(0), 128, 128, 3, true, 1, 0.5, "model.4"); auto conv5 = convBlock(network, weightMap, *bottleneck_csp4->getOutput(0), 256, 3, 2, 1, "model.5"); auto bottleneck_csp6 = bottleneckCSP(network, weightMap, *conv5->getOutput(0), 256, 256, 3, true, 1, 0.5, "model.6"); auto conv7 = convBlock(network, weightMap, *bottleneck_csp6->getOutput(0), 512, 3, 2, 1, "model.7"); auto spp8 = SPP(network, weightMap, *conv7->getOutput(0), 512, 512, 5, 9, 13, "model.8"); // yolov5 head auto bottleneck_csp9 = bottleneckCSP(network, weightMap, *spp8->getOutput(0), 512, 512, 1, false, 1, 0.5, "model.9"); auto conv10 = convBlock(network, weightMap, *bottleneck_csp9->getOutput(0), 256, 1, 1, 1, "model.10"); float *deval = reinterpret_cast(malloc(sizeof(float) * 256 * 2 * 2)); for (int i = 0; i < 256 * 2 * 2; i++) { deval[i] = 1.0; } Weights deconvwts11{ DataType::kFLOAT, deval, 256 * 2 * 2 }; IDeconvolutionLayer* deconv11 = network->addDeconvolutionNd(*conv10->getOutput(0), 256, DimsHW{ 2, 2 }, deconvwts11, emptywts); deconv11->setStrideNd(DimsHW{ 2, 2 }); deconv11->setNbGroups(256); weightMap["deconv11"] = deconvwts11; ITensor* inputTensors12[] = { deconv11->getOutput(0), bottleneck_csp6->getOutput(0) }; auto cat12 = network->addConcatenation(inputTensors12, 2); auto bottleneck_csp13 = bottleneckCSP(network, weightMap, *cat12->getOutput(0), 512, 256, 1, false, 1, 0.5, "model.13"); auto conv14 = convBlock(network, weightMap, *bottleneck_csp13->getOutput(0), 128, 1, 1, 1, "model.14"); Weights deconvwts15{ DataType::kFLOAT, deval, 128 * 2 * 2 }; IDeconvolutionLayer* deconv15 = network->addDeconvolutionNd(*conv14->getOutput(0), 128, DimsHW{ 2, 2 }, deconvwts15, emptywts); deconv15->setStrideNd(DimsHW{ 2, 2 }); deconv15->setNbGroups(128); ITensor* inputTensors16[] = { deconv15->getOutput(0), bottleneck_csp4->getOutput(0) }; auto cat16 = network->addConcatenation(inputTensors16, 2); auto bottleneck_csp17 = bottleneckCSP(network, weightMap, *cat16->getOutput(0), 256, 128, 1, false, 1, 0.5, "model.17"); IConvolutionLayer* det0 = network->addConvolutionNd(*bottleneck_csp17->getOutput(0), 3 * (Yolo::CLASS_NUM + 5), DimsHW{ 1, 1 }, weightMap["model.24.m.0.weight"], weightMap["model.24.m.0.bias"]); auto conv18 = convBlock(network, weightMap, *bottleneck_csp17->getOutput(0), 128, 3, 2, 1, "model.18"); ITensor* inputTensors19[] = { conv18->getOutput(0), conv14->getOutput(0) }; auto cat19 = network->addConcatenation(inputTensors19, 2); auto bottleneck_csp20 = bottleneckCSP(network, weightMap, *cat19->getOutput(0), 256, 256, 1, false, 1, 0.5, "model.20"); IConvolutionLayer* det1 = network->addConvolutionNd(*bottleneck_csp20->getOutput(0), 3 * (Yolo::CLASS_NUM + 5), DimsHW{ 1, 1 }, weightMap["model.24.m.1.weight"], weightMap["model.24.m.1.bias"]); auto conv21 = convBlock(network, weightMap, *bottleneck_csp20->getOutput(0), 256, 3, 2, 1, "model.21"); ITensor* inputTensors22[] = { conv21->getOutput(0), conv10->getOutput(0) }; auto cat22 = network->addConcatenation(inputTensors22, 2); auto bottleneck_csp23 = bottleneckCSP(network, weightMap, *cat22->getOutput(0), 512, 512, 1, false, 1, 0.5, "model.23"); IConvolutionLayer* det2 = network->addConvolutionNd(*bottleneck_csp23->getOutput(0), 3 * (Yolo::CLASS_NUM + 5), DimsHW{ 1, 1 }, weightMap["model.24.m.2.weight"], weightMap["model.24.m.2.bias"]); auto detect24 = addYoLoLayer(network, weightMap, det0, det1, det2); detect24->getOutput(0)->setName(OUTPUT_DET_NAME); auto conv25 = convBlock(network, weightMap, *cat16->getOutput(0), 64, 3, 1, 1, "model.25"); // upsample 26 Weights deconvwts26{ DataType::kFLOAT, deval, 64 * 2 * 2 }; IDeconvolutionLayer* deconv26 = network->addDeconvolutionNd(*conv25->getOutput(0), 64, DimsHW{ 2, 2 }, deconvwts26, emptywts); deconv26->setStrideNd(DimsHW{ 2, 2 }); deconv26->setNbGroups(64); ITensor* inputTensors27[] = { deconv26->getOutput(0), bottleneck_CSP2->getOutput(0) }; auto cat27 = network->addConcatenation(inputTensors27, 2); auto bottleneck_csp28 = bottleneckCSP(network, weightMap, *cat27->getOutput(0), 128, 64, 1, false, 1, 0.5, "model.28"); auto conv29 = convBlock(network, weightMap, *bottleneck_csp28->getOutput(0), 32, 3, 1, 1, "model.29"); // upsample 30 Weights deconvwts30{ DataType::kFLOAT, deval, 32 * 2 * 2 }; IDeconvolutionLayer* deconv30 = network->addDeconvolutionNd(*conv29->getOutput(0), 32, DimsHW{ 2, 2 }, deconvwts30, emptywts); deconv30->setStrideNd(DimsHW{ 2, 2 }); deconv30->setNbGroups(32); auto conv31 = convBlock(network, weightMap, *deconv30->getOutput(0), 16, 3, 1, 1, "model.31"); auto bottleneck_csp32 = bottleneckCSP(network, weightMap, *conv31->getOutput(0), 16, 8, 1, false, 1, 0.5, "model.32"); // upsample33 Weights deconvwts33{ DataType::kFLOAT, deval, 8 * 2 * 2 }; IDeconvolutionLayer* deconv33 = network->addDeconvolutionNd(*bottleneck_csp32->getOutput(0), 8, DimsHW{ 2, 2 }, deconvwts33, emptywts); deconv33->setStrideNd(DimsHW{ 2, 2 }); deconv33->setNbGroups(8); auto conv34 = convBlock(network, weightMap, *deconv33->getOutput(0), 3, 3, 1, 1, "model.34"); // segmentation output ISliceLayer *slicelayer = network->addSlice(*conv34->getOutput(0), Dims3{ 0, (Yolo::INPUT_H - Yolo::IMG_H) / 2, 0 }, Dims3{ 3, Yolo::IMG_H, Yolo::IMG_W }, Dims3{ 1, 1, 1 }); auto segout = network->addTopK(*slicelayer->getOutput(0), TopKOperation::kMAX, 1, 1); segout->getOutput(1)->setName(OUTPUT_SEG_NAME); auto conv35 = convBlock(network, weightMap, *cat16->getOutput(0), 64, 3, 1, 1, "model.35"); // upsample36 Weights deconvwts36{ DataType::kFLOAT, deval, 64 * 2 * 2 }; IDeconvolutionLayer* deconv36 = network->addDeconvolutionNd(*conv35->getOutput(0), 64, DimsHW{ 2, 2 }, deconvwts36, emptywts); deconv36->setStrideNd(DimsHW{ 2, 2 }); deconv36->setNbGroups(64); ITensor* inputTensors37[] = { deconv36->getOutput(0), bottleneck_CSP2->getOutput(0) }; auto cat37 = network->addConcatenation(inputTensors37, 2); auto bottleneck_csp38 = bottleneckCSP(network, weightMap, *cat37->getOutput(0), 128, 64, 1, false, 1, 0.5, "model.38"); auto conv39 = convBlock(network, weightMap, *bottleneck_csp38->getOutput(0), 32, 3, 1, 1, "model.39"); // upsample40 Weights deconvwts40{ DataType::kFLOAT, deval, 32 * 2 * 2 }; IDeconvolutionLayer* deconv40 = network->addDeconvolutionNd(*conv39->getOutput(0), 32, DimsHW{ 2, 2 }, deconvwts40, emptywts); deconv40->setStrideNd(DimsHW{ 2, 2 }); deconv40->setNbGroups(32); auto conv41 = convBlock(network, weightMap, *deconv40->getOutput(0), 16, 3, 1, 1, "model.41"); auto bottleneck_csp42 = bottleneckCSP(network, weightMap, *conv41->getOutput(0), 16, 8, 1, false, 1, 0.5, "model.42"); // upsample43 Weights deconvwts43{ DataType::kFLOAT, deval, 8 * 2 * 2 }; IDeconvolutionLayer* deconv43 = network->addDeconvolutionNd(*bottleneck_csp42->getOutput(0), 8, DimsHW{ 2, 2 }, deconvwts43, emptywts); deconv43->setStrideNd(DimsHW{ 2, 2 }); deconv43->setNbGroups(8); auto conv44 = convBlock(network, weightMap, *deconv43->getOutput(0), 2, 3, 1, 1, "model.44"); // lane-det output ISliceLayer *laneSlice = network->addSlice(*conv44->getOutput(0), Dims3{ 0, (Yolo::INPUT_H - Yolo::IMG_H) / 2, 0 }, Dims3{ 2, Yolo::IMG_H, Yolo::IMG_W }, Dims3{ 1, 1, 1 }); auto laneout = network->addTopK(*laneSlice->getOutput(0), TopKOperation::kMAX, 1, 1); laneout->getOutput(1)->setName(OUTPUT_LANE_NAME); // // std::cout << std::to_string(slicelayer->getOutput(0)->getDimensions().d[0]) << std::endl; // // ISliceLayer *tmp1 = network->addSlice(*slicelayer->getOutput(0), Dims3{ 0, 0, 0 }, Dims3{ 1, (Yolo::INPUT_H - 2 * Yolo::PAD_H), Yolo::INPUT_W }, Dims3{ 1, 1, 1 }); // // ISliceLayer *tmp2 = network->addSlice(*slicelayer->getOutput(0), Dims3{ 1, 0, 0 }, Dims3{ 1, (Yolo::INPUT_H - 2 * Yolo::PAD_H), Yolo::INPUT_W }, Dims3{ 1, 1, 1 }); // // auto segout = network->addElementWise(*tmp1->getOutput(0), *tmp2->getOutput(0), ElementWiseOperation::kLESS); // std::cout << std::to_string(conv44->getOutput(0)->getDimensions().d[0]) << std::endl; // std::cout << std::to_string(conv44->getOutput(0)->getDimensions().d[1]) << std::endl; // std::cout << std::to_string(conv44->getOutput(0)->getDimensions().d[2]) << std::endl; // assert(false); // // segout->setOutputType(1, DataType::kFLOAT); // segout->getOutput(1)->setName(OUTPUT_SEG_NAME); // // std::cout << std::to_string(segout->getOutput(1)->getDimensions().d[0]) << std::endl; // detection output network->markOutput(*detect24->getOutput(0)); // segmentation output network->markOutput(*segout->getOutput(1)); // lane output network->markOutput(*laneout->getOutput(1)); assert(false); // Build engine builder->setMaxBatchSize(maxBatchSize); config->setMaxWorkspaceSize(2L * (1L << 30)); // 2GB #if defined(USE_FP16) config->setFlag(BuilderFlag::kFP16); // #elif defined(USE_INT8) // std::cout << "Your platform support int8: " << (builder->platformHasFastInt8() ? "true" : "false") << std::endl; // assert(builder->platformHasFastInt8()); // config->setFlag(BuilderFlag::kINT8); // Int8EntropyCalibrator2* calibrator = new Int8EntropyCalibrator2(1, INPUT_W, INPUT_H, "./coco_calib/", "int8calib.table", INPUT_BLOB_NAME); // config->setInt8Calibrator(calibrator); #endif std::cout << "Building engine, please wait for a while..." << std::endl; ICudaEngine* engine = builder->buildEngineWithConfig(*network, *config); std::cout << "Build engine successfully!" << std::endl; // Don't need the network any more network->destroy(); // Release host memory for (auto& mem : weightMap) { free((void*)(mem.second.values)); } return engine; } void APIToModel(unsigned int maxBatchSize, IHostMemory** modelStream, float& gd, float& gw, std::string& wts_name) { // Create builder IBuilder* builder = createInferBuilder(gLogger); IBuilderConfig* config = builder->createBuilderConfig(); // Create model to populate the network, then set the outputs and create an engine ICudaEngine* engine = build_engine(maxBatchSize, builder, config, DataType::kFLOAT, gd, gw, wts_name); assert(engine != nullptr); // Serialize the engine (*modelStream) = engine->serialize(); // Close everything down engine->destroy(); builder->destroy(); config->destroy(); } void doInference(IExecutionContext& context, cudaStream_t& stream, void **buffers, float* det_output, int* seg_output, int* lane_output, int batchSize) { // DMA input batch data to device, infer on the batch asynchronously, and DMA output back to host // CUDA_CHECK(cudaMemcpyAsync(buffers[0], input, batchSize * 3 * INPUT_H * INPUT_W * sizeof(float), cudaMemcpyHostToDevice, stream)); context.enqueue(batchSize, buffers, stream, nullptr); CUDA_CHECK(cudaMemcpyAsync(det_output, buffers[1], batchSize * OUTPUT_SIZE * sizeof(float), cudaMemcpyDeviceToHost, stream)); CUDA_CHECK(cudaMemcpyAsync(seg_output, buffers[2], batchSize * IMG_H * IMG_W * sizeof(int), cudaMemcpyDeviceToHost, stream)); CUDA_CHECK(cudaMemcpyAsync(lane_output, buffers[3], batchSize * IMG_H * IMG_W * sizeof(int), cudaMemcpyDeviceToHost, stream)); cudaStreamSynchronize(stream); } void doInferenceCpu(IExecutionContext& context, cudaStream_t& stream, void **buffers, float* input, float* det_output, int* seg_output, int* lane_output, int batchSize) { // DMA input batch data to device, infer on the batch asynchronously, and DMA output back to host CUDA_CHECK(cudaMemcpyAsync(buffers[0], input, batchSize * 3 * INPUT_H * INPUT_W * sizeof(float), cudaMemcpyHostToDevice, stream)); context.enqueue(batchSize, buffers, stream, nullptr); CUDA_CHECK(cudaMemcpyAsync(det_output, buffers[1], batchSize * OUTPUT_SIZE * sizeof(float), cudaMemcpyDeviceToHost, stream)); CUDA_CHECK(cudaMemcpyAsync(seg_output, buffers[2], batchSize * IMG_H * IMG_W * sizeof(int), cudaMemcpyDeviceToHost, stream)); CUDA_CHECK(cudaMemcpyAsync(lane_output, buffers[3], batchSize * IMG_H * IMG_W * sizeof(int), cudaMemcpyDeviceToHost, stream)); cudaStreamSynchronize(stream); } bool parse_args(int argc, char** argv, std::string& wts, std::string& engine, float& gd, float& gw, std::string& img_dir) { if (argc < 4) return false; if (std::string(argv[1]) == "-s" && (argc == 5 || argc == 7)) { wts = std::string(argv[2]); engine = std::string(argv[3]); auto net = std::string(argv[4]); if (net == "s") { gd = 0.33; gw = 0.50; } else if (net == "m") { gd = 0.67; gw = 0.75; } else if (net == "l") { gd = 1.0; gw = 1.0; } else if (net == "x") { gd = 1.33; gw = 1.25; } else if (net == "c" && argc == 7) { gd = atof(argv[5]); gw = atof(argv[6]); } else { return false; } } else if (std::string(argv[1]) == "-d" && argc == 4) { engine = std::string(argv[2]); img_dir = std::string(argv[3]); } else { return false; } return true; } #endif