#include #include #include #include "yololayer.h" #include "cuda_utils.h" namespace Tn { template void write(char*& buffer, const T& val) { *reinterpret_cast(buffer) = val; buffer += sizeof(T); } template void read(const char*& buffer, T& val) { val = *reinterpret_cast(buffer); buffer += sizeof(T); } } using namespace Yolo; namespace nvinfer1 { YoloLayerPlugin::YoloLayerPlugin(int classCount, int netWidth, int netHeight, int maxOut, const std::vector& vYoloKernel) { mClassCount = classCount; mYoloV5NetWidth = netWidth; mYoloV5NetHeight = netHeight; mMaxOutObject = maxOut; mYoloKernel = vYoloKernel; mKernelCount = vYoloKernel.size(); CUDA_CHECK(cudaMallocHost(&mAnchor, mKernelCount * sizeof(void*))); size_t AnchorLen = sizeof(float)* CHECK_COUNT * 2; for (int ii = 0; ii < mKernelCount; ii++) { CUDA_CHECK(cudaMalloc(&mAnchor[ii], AnchorLen)); const auto& yolo = mYoloKernel[ii]; CUDA_CHECK(cudaMemcpy(mAnchor[ii], yolo.anchors, AnchorLen, cudaMemcpyHostToDevice)); } } YoloLayerPlugin::~YoloLayerPlugin() { for (int ii = 0; ii < mKernelCount; ii++) { CUDA_CHECK(cudaFree(mAnchor[ii])); } CUDA_CHECK(cudaFreeHost(mAnchor)); } // create the plugin at runtime from a byte stream YoloLayerPlugin::YoloLayerPlugin(const void* data, size_t length) { using namespace Tn; const char *d = reinterpret_cast(data), *a = d; read(d, mClassCount); read(d, mThreadCount); read(d, mKernelCount); read(d, mYoloV5NetWidth); read(d, mYoloV5NetHeight); read(d, mMaxOutObject); mYoloKernel.resize(mKernelCount); auto kernelSize = mKernelCount * sizeof(YoloKernel); memcpy(mYoloKernel.data(), d, kernelSize); d += kernelSize; CUDA_CHECK(cudaMallocHost(&mAnchor, mKernelCount * sizeof(void*))); size_t AnchorLen = sizeof(float)* CHECK_COUNT * 2; for (int ii = 0; ii < mKernelCount; ii++) { CUDA_CHECK(cudaMalloc(&mAnchor[ii], AnchorLen)); const auto& yolo = mYoloKernel[ii]; CUDA_CHECK(cudaMemcpy(mAnchor[ii], yolo.anchors, AnchorLen, cudaMemcpyHostToDevice)); } assert(d == a + length); } void YoloLayerPlugin::serialize(void* buffer) const { using namespace Tn; char* d = static_cast(buffer), *a = d; write(d, mClassCount); write(d, mThreadCount); write(d, mKernelCount); write(d, mYoloV5NetWidth); write(d, mYoloV5NetHeight); write(d, mMaxOutObject); auto kernelSize = mKernelCount * sizeof(YoloKernel); memcpy(d, mYoloKernel.data(), kernelSize); d += kernelSize; assert(d == a + getSerializationSize()); } size_t YoloLayerPlugin::getSerializationSize() const { return sizeof(mClassCount) + sizeof(mThreadCount) + sizeof(mKernelCount) + sizeof(Yolo::YoloKernel) * mYoloKernel.size() + sizeof(mYoloV5NetWidth) + sizeof(mYoloV5NetHeight) + sizeof(mMaxOutObject); } int YoloLayerPlugin::initialize() { return 0; } Dims YoloLayerPlugin::getOutputDimensions(int index, const Dims* inputs, int nbInputDims) { //output the result to channel int totalsize = mMaxOutObject * sizeof(Detection) / sizeof(float); return Dims3(totalsize + 1, 1, 1); } // Set plugin namespace void YoloLayerPlugin::setPluginNamespace(const char* pluginNamespace) { mPluginNamespace = pluginNamespace; } const char* YoloLayerPlugin::getPluginNamespace() const { return mPluginNamespace; } // Return the DataType of the plugin output at the requested index DataType YoloLayerPlugin::getOutputDataType(int index, const nvinfer1::DataType* inputTypes, int nbInputs) const { return DataType::kFLOAT; } // Return true if output tensor is broadcast across a batch. bool YoloLayerPlugin::isOutputBroadcastAcrossBatch(int outputIndex, const bool* inputIsBroadcasted, int nbInputs) const { return false; } // Return true if plugin can use input that is broadcast across batch without replication. bool YoloLayerPlugin::canBroadcastInputAcrossBatch(int inputIndex) const { return false; } void YoloLayerPlugin::configurePlugin(const PluginTensorDesc* in, int nbInput, const PluginTensorDesc* out, int nbOutput) { } // Attach the plugin object to an execution context and grant the plugin the access to some context resource. void YoloLayerPlugin::attachToContext(cudnnContext* cudnnContext, cublasContext* cublasContext, IGpuAllocator* gpuAllocator) { } // Detach the plugin object from its execution context. void YoloLayerPlugin::detachFromContext() {} const char* YoloLayerPlugin::getPluginType() const { return "YoloLayer_TRT"; } const char* YoloLayerPlugin::getPluginVersion() const { return "1"; } void YoloLayerPlugin::destroy() { delete this; } // Clone the plugin IPluginV2IOExt* YoloLayerPlugin::clone() const { YoloLayerPlugin* p = new YoloLayerPlugin(mClassCount, mYoloV5NetWidth, mYoloV5NetHeight, mMaxOutObject, mYoloKernel); p->setPluginNamespace(mPluginNamespace); return p; } __device__ float Logist(float data) { return 1.0f / (1.0f + expf(-data)); }; __global__ void CalDetection(const float *input, float *output, int noElements, const int netwidth, const int netheight, int maxoutobject, int yoloWidth, int yoloHeight, const float anchors[CHECK_COUNT * 2], int classes, int outputElem) { int idx = threadIdx.x + blockDim.x * blockIdx.x; if (idx >= noElements) return; int total_grid = yoloWidth * yoloHeight; int bnIdx = idx / total_grid; idx = idx - total_grid * bnIdx; int info_len_i = 5 + classes; const float* curInput = input + bnIdx * (info_len_i * total_grid * CHECK_COUNT); for (int k = 0; k < 3; ++k) { float box_prob = Logist(curInput[idx + k * info_len_i * total_grid + 4 * total_grid]); if (box_prob < IGNORE_THRESH) continue; int class_id = 0; float max_cls_prob = 0.0; for (int i = 5; i < info_len_i; ++i) { float p = Logist(curInput[idx + k * info_len_i * total_grid + i * total_grid]); if (p > max_cls_prob) { max_cls_prob = p; class_id = i - 5; } } float *res_count = output + bnIdx * outputElem; int count = (int)atomicAdd(res_count, 1); if (count >= maxoutobject) return; char* data = (char *)res_count + sizeof(float) + count * sizeof(Detection); Detection* det = (Detection*)(data); int row = idx / yoloWidth; int col = idx % yoloWidth; //Location // pytorch: // y = x[i].sigmoid() // y[..., 0:2] = (y[..., 0:2] * 2. - 0.5 + self.grid[i].to(x[i].device)) * self.stride[i] # xy // y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh // X: (sigmoid(tx) + cx)/FeaturemapW * netwidth det->bbox[0] = (col - 0.5f + 2.0f * Logist(curInput[idx + k * info_len_i * total_grid + 0 * total_grid])) * netwidth / yoloWidth; det->bbox[1] = (row - 0.5f + 2.0f * Logist(curInput[idx + k * info_len_i * total_grid + 1 * total_grid])) * netheight / yoloHeight; // W: (Pw * e^tw) / FeaturemapW * netwidth // v5: https://github.com/ultralytics/yolov5/issues/471 det->bbox[2] = 2.0f * Logist(curInput[idx + k * info_len_i * total_grid + 2 * total_grid]); det->bbox[2] = det->bbox[2] * det->bbox[2] * anchors[2 * k]; det->bbox[3] = 2.0f * Logist(curInput[idx + k * info_len_i * total_grid + 3 * total_grid]); det->bbox[3] = det->bbox[3] * det->bbox[3] * anchors[2 * k + 1]; det->conf = box_prob * max_cls_prob; det->class_id = class_id; } } void YoloLayerPlugin::forwardGpu(const float *const * inputs, float* output, cudaStream_t stream, int batchSize) { int outputElem = 1 + mMaxOutObject * sizeof(Detection) / sizeof(float); for (int idx = 0; idx < batchSize; ++idx) { CUDA_CHECK(cudaMemset(output + idx * outputElem, 0, sizeof(float))); } int numElem = 0; for (unsigned int i = 0; i < mYoloKernel.size(); ++i) { const auto& yolo = mYoloKernel[i]; numElem = yolo.width*yolo.height*batchSize; if (numElem < mThreadCount) mThreadCount = numElem; //printf("Net: %d %d \n", mYoloV5NetWidth, mYoloV5NetHeight); CalDetection << < (yolo.width*yolo.height*batchSize + mThreadCount - 1) / mThreadCount, mThreadCount >> > (inputs[i], output, numElem, mYoloV5NetWidth, mYoloV5NetHeight, mMaxOutObject, yolo.width, yolo.height, (float *)mAnchor[i], mClassCount, outputElem); } } int YoloLayerPlugin::enqueue(int batchSize, const void*const * inputs, void** outputs, void* workspace, cudaStream_t stream) { forwardGpu((const float *const *)inputs, (float*)outputs[0], stream, batchSize); return 0; } PluginFieldCollection YoloPluginCreator::mFC{}; std::vector YoloPluginCreator::mPluginAttributes; YoloPluginCreator::YoloPluginCreator() { mPluginAttributes.clear(); mFC.nbFields = mPluginAttributes.size(); mFC.fields = mPluginAttributes.data(); } const char* YoloPluginCreator::getPluginName() const { return "YoloLayer_TRT"; } const char* YoloPluginCreator::getPluginVersion() const { return "1"; } const PluginFieldCollection* YoloPluginCreator::getFieldNames() { return &mFC; } IPluginV2IOExt* YoloPluginCreator::createPlugin(const char* name, const PluginFieldCollection* fc) { int class_count = -1; int input_w = -1; int input_h = -1; int max_output_object_count = -1; std::vector yolo_kernels(3); const PluginField* fields = fc->fields; for (int i = 0; i < fc->nbFields; i++) { if (strcmp(fields[i].name, "netdata") == 0) { assert(fields[i].type == PluginFieldType::kFLOAT32); int *tmp = (int*)(fields[i].data); class_count = tmp[0]; input_w = tmp[1]; input_h = tmp[2]; max_output_object_count = tmp[3]; } else if (strstr(fields[i].name, "yolodata") != NULL) { assert(fields[i].type == PluginFieldType::kFLOAT32); int *tmp = (int*)(fields[i].data); YoloKernel kernel; kernel.width = tmp[0]; kernel.height = tmp[1]; for (int j = 0; j < fields[i].length - 2; j++) { kernel.anchors[j] = tmp[j + 2]; } yolo_kernels[2 - (fields[i].name[8] - '1')] = kernel; } } assert(class_count && input_w && input_h && max_output_object_count); YoloLayerPlugin* obj = new YoloLayerPlugin(class_count, input_w, input_h, max_output_object_count, yolo_kernels); obj->setPluginNamespace(mNamespace.c_str()); return obj; } IPluginV2IOExt* YoloPluginCreator::deserializePlugin(const char* name, const void* serialData, size_t serialLength) { // This object will be deleted when the network is destroyed, which will // call YoloLayerPlugin::destroy() YoloLayerPlugin* obj = new YoloLayerPlugin(serialData, serialLength); obj->setPluginNamespace(mNamespace.c_str()); return obj; } }